Step | Hyp | Ref
| Expression |
1 | | ncfinlowerlem1 4483 |
. . . 4
⊢ {m ∣ ∀a∀b((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))} ∈
V |
2 | | eleq2 2414 |
. . . . . . 7
⊢ (m = 0c → (℘1a ∈ m ↔ ℘1a ∈
0c)) |
3 | | eleq2 2414 |
. . . . . . 7
⊢ (m = 0c → (℘1b ∈ m ↔ ℘1b ∈
0c)) |
4 | 2, 3 | anbi12d 691 |
. . . . . 6
⊢ (m = 0c → ((℘1a ∈ m ∧ ℘1b ∈ m) ↔ (℘1a ∈
0c ∧ ℘1b ∈
0c))) |
5 | 4 | imbi1d 308 |
. . . . 5
⊢ (m = 0c → (((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ((℘1a ∈
0c ∧ ℘1b ∈
0c) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
6 | 5 | 2albidv 1627 |
. . . 4
⊢ (m = 0c → (∀a∀b((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ∀a∀b((℘1a ∈
0c ∧ ℘1b ∈
0c) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
7 | | eleq2 2414 |
. . . . . . 7
⊢ (m = k →
(℘1a ∈ m ↔ ℘1a ∈ k)) |
8 | | eleq2 2414 |
. . . . . . 7
⊢ (m = k →
(℘1b ∈ m ↔ ℘1b ∈ k)) |
9 | 7, 8 | anbi12d 691 |
. . . . . 6
⊢ (m = k →
((℘1a ∈ m ∧ ℘1b ∈ m) ↔ (℘1a ∈ k ∧ ℘1b ∈ k))) |
10 | 9 | imbi1d 308 |
. . . . 5
⊢ (m = k →
(((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
11 | 10 | 2albidv 1627 |
. . . 4
⊢ (m = k →
(∀a∀b((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
12 | | eleq2 2414 |
. . . . . . 7
⊢ (m = (k
+c 1c) → (℘1a ∈ m ↔ ℘1a ∈ (k +c
1c))) |
13 | | eleq2 2414 |
. . . . . . 7
⊢ (m = (k
+c 1c) → (℘1b ∈ m ↔ ℘1b ∈ (k +c
1c))) |
14 | 12, 13 | anbi12d 691 |
. . . . . 6
⊢ (m = (k
+c 1c) → ((℘1a ∈ m ∧ ℘1b ∈ m) ↔ (℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c
1c)))) |
15 | 14 | imbi1d 308 |
. . . . 5
⊢ (m = (k
+c 1c) → (((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) →
∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
16 | 15 | 2albidv 1627 |
. . . 4
⊢ (m = (k
+c 1c) → (∀a∀b((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ∀a∀b((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) →
∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
17 | | eleq2 2414 |
. . . . . . 7
⊢ (m = M →
(℘1a ∈ m ↔ ℘1a ∈ M)) |
18 | | eleq2 2414 |
. . . . . . 7
⊢ (m = M →
(℘1b ∈ m ↔ ℘1b ∈ M)) |
19 | 17, 18 | anbi12d 691 |
. . . . . 6
⊢ (m = M →
((℘1a ∈ m ∧ ℘1b ∈ m) ↔ (℘1a ∈ M ∧ ℘1b ∈ M))) |
20 | 19 | imbi1d 308 |
. . . . 5
⊢ (m = M →
(((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
21 | 20 | 2albidv 1627 |
. . . 4
⊢ (m = M →
(∀a∀b((℘1a ∈ m ∧ ℘1b ∈ m) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ∀a∀b((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
22 | | el0c 4422 |
. . . . . . 7
⊢ (℘1a ∈
0c ↔ ℘1a = ∅) |
23 | | pw10b 4167 |
. . . . . . 7
⊢ (℘1a = ∅ ↔
a = ∅) |
24 | 22, 23 | bitri 240 |
. . . . . 6
⊢ (℘1a ∈
0c ↔ a = ∅) |
25 | | el0c 4422 |
. . . . . . 7
⊢ (℘1b ∈
0c ↔ ℘1b = ∅) |
26 | | pw10b 4167 |
. . . . . . 7
⊢ (℘1b = ∅ ↔
b = ∅) |
27 | 25, 26 | bitri 240 |
. . . . . 6
⊢ (℘1b ∈
0c ↔ b = ∅) |
28 | | peano1 4403 |
. . . . . . . 8
⊢
0c ∈ Nn |
29 | | nulel0c 4423 |
. . . . . . . 8
⊢ ∅ ∈
0c |
30 | | eleq2 2414 |
. . . . . . . . 9
⊢ (n = 0c → (∅ ∈ n ↔ ∅ ∈ 0c)) |
31 | 30 | rspcev 2956 |
. . . . . . . 8
⊢
((0c ∈ Nn ∧ ∅ ∈
0c) → ∃n ∈ Nn ∅ ∈ n) |
32 | 28, 29, 31 | mp2an 653 |
. . . . . . 7
⊢ ∃n ∈ Nn ∅ ∈ n |
33 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (a = ∅ →
(a ∈
n ↔ ∅ ∈ n)) |
34 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (b = ∅ →
(b ∈
n ↔ ∅ ∈ n)) |
35 | 33, 34 | bi2anan9 843 |
. . . . . . . . 9
⊢ ((a = ∅ ∧ b = ∅) → ((a
∈ n ∧ b ∈ n) ↔
(∅ ∈
n ∧ ∅ ∈ n))) |
36 | | anidm 625 |
. . . . . . . . 9
⊢ ((∅ ∈ n ∧ ∅ ∈ n) ↔ ∅ ∈ n) |
37 | 35, 36 | syl6bb 252 |
. . . . . . . 8
⊢ ((a = ∅ ∧ b = ∅) → ((a
∈ n ∧ b ∈ n) ↔
∅ ∈
n)) |
38 | 37 | rexbidv 2636 |
. . . . . . 7
⊢ ((a = ∅ ∧ b = ∅) → (∃n ∈ Nn (a ∈ n ∧ b ∈ n) ↔ ∃n ∈ Nn ∅ ∈ n)) |
39 | 32, 38 | mpbiri 224 |
. . . . . 6
⊢ ((a = ∅ ∧ b = ∅) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) |
40 | 24, 27, 39 | syl2anb 465 |
. . . . 5
⊢ ((℘1a ∈
0c ∧ ℘1b ∈
0c) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) |
41 | 40 | gen2 1547 |
. . . 4
⊢ ∀a∀b((℘1a ∈
0c ∧ ℘1b ∈
0c) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) |
42 | | nfv 1619 |
. . . . . . 7
⊢ Ⅎa k ∈ Nn |
43 | | nfa1 1788 |
. . . . . . 7
⊢ Ⅎa∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) |
44 | 42, 43 | nfan 1824 |
. . . . . 6
⊢ Ⅎa(k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
45 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎb k ∈ Nn |
46 | | nfa2 1855 |
. . . . . . . 8
⊢ Ⅎb∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) |
47 | 45, 46 | nfan 1824 |
. . . . . . 7
⊢ Ⅎb(k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
48 | | reeanv 2779 |
. . . . . . . . 9
⊢ (∃c ∈ k ∃d ∈ k (∃x ∈ ∼ c℘1a = (c ∪
{x}) ∧
∃y ∈ ∼ d℘1b = (d ∪
{y})) ↔ (∃c ∈ k ∃x ∈ ∼ c℘1a = (c ∪
{x}) ∧
∃d ∈ k ∃y ∈ ∼ d℘1b = (d ∪
{y}))) |
49 | | reeanv 2779 |
. . . . . . . . . 10
⊢ (∃x ∈ ∼ c∃y ∈ ∼ d(℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) ↔ (∃x ∈ ∼ c℘1a = (c ∪
{x}) ∧
∃y ∈ ∼ d℘1b = (d ∪
{y}))) |
50 | 49 | 2rexbii 2642 |
. . . . . . . . 9
⊢ (∃c ∈ k ∃d ∈ k ∃x ∈ ∼ c∃y ∈ ∼ d(℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) ↔ ∃c ∈ k ∃d ∈ k (∃x ∈ ∼ c℘1a = (c ∪
{x}) ∧
∃y ∈ ∼ d℘1b = (d ∪
{y}))) |
51 | | elsuc 4414 |
. . . . . . . . . 10
⊢ (℘1a ∈ (k +c 1c) ↔
∃c ∈ k ∃x ∈ ∼ c℘1a = (c ∪
{x})) |
52 | | elsuc 4414 |
. . . . . . . . . 10
⊢ (℘1b ∈ (k +c 1c) ↔
∃d ∈ k ∃y ∈ ∼ d℘1b = (d ∪
{y})) |
53 | 51, 52 | anbi12i 678 |
. . . . . . . . 9
⊢ ((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) ↔
(∃c
∈ k ∃x ∈ ∼ c℘1a = (c ∪
{x}) ∧
∃d ∈ k ∃y ∈ ∼ d℘1b = (d ∪
{y}))) |
54 | 48, 50, 53 | 3bitr4ri 269 |
. . . . . . . 8
⊢ ((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) ↔
∃c ∈ k ∃d ∈ k ∃x ∈ ∼ c∃y ∈ ∼ d(℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y}))) |
55 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ e ∈
V |
56 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ f ∈
V |
57 | | pw1eq 4144 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (a = e →
℘1a = ℘1e) |
58 | 57 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (a = e →
(℘1a ∈ k ↔ ℘1e ∈ k)) |
59 | | pw1eq 4144 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (b = f →
℘1b = ℘1f) |
60 | 59 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (b = f →
(℘1b ∈ k ↔ ℘1f ∈ k)) |
61 | 58, 60 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((a = e ∧ b = f) → ((℘1a ∈ k ∧ ℘1b ∈ k) ↔ (℘1e ∈ k ∧ ℘1f ∈ k))) |
62 | | elequ1 1713 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (a = e →
(a ∈
n ↔ e ∈ n)) |
63 | | elequ1 1713 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (b = f →
(b ∈
n ↔ f ∈ n)) |
64 | 62, 63 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((a = e ∧ b = f) → ((a
∈ n ∧ b ∈ n) ↔
(e ∈
n ∧
f ∈
n))) |
65 | 64 | rexbidv 2636 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((a = e ∧ b = f) → (∃n ∈ Nn (a ∈ n ∧ b ∈ n) ↔ ∃n ∈ Nn (e ∈ n ∧ f ∈ n))) |
66 | 61, 65 | imbi12d 311 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((a = e ∧ b = f) → (((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ((℘1e ∈ k ∧ ℘1f ∈ k) → ∃n ∈ Nn (e ∈ n ∧ f ∈ n)))) |
67 | 66 | spc2gv 2943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((e ∈ V ∧ f ∈ V) → (∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ((℘1e ∈ k ∧ ℘1f ∈ k) → ∃n ∈ Nn (e ∈ n ∧ f ∈ n)))) |
68 | 55, 56, 67 | mp2an 653 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ((℘1e ∈ k ∧ ℘1f ∈ k) → ∃n ∈ Nn (e ∈ n ∧ f ∈ n))) |
69 | 68 | com12 27 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((℘1e ∈ k ∧ ℘1f ∈ k) → (∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ∃n ∈ Nn (e ∈ n ∧ f ∈ n))) |
70 | 69 | ad2antrl 708 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → (∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ∃n ∈ Nn (e ∈ n ∧ f ∈ n))) |
71 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (n ∈ Nn → (n
+c 1c) ∈
Nn ) |
72 | 71 | ad2antrl 708 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → (n
+c 1c) ∈
Nn ) |
73 | | simprrl 740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → e
∈ n) |
74 | | simprrl 740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → ¬ z ∈ e) |
75 | 74 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → ¬ z ∈ e) |
76 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ z ∈
V |
77 | 76 | elsuci 4415 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((e ∈ n ∧ ¬ z ∈ e) → (e
∪ {z}) ∈ (n
+c 1c)) |
78 | 73, 75, 77 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → (e
∪ {z}) ∈ (n
+c 1c)) |
79 | | simprrr 741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → f
∈ n) |
80 | | simprrr 741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → ¬ w ∈ f) |
81 | 80 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → ¬ w ∈ f) |
82 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ w ∈
V |
83 | 82 | elsuci 4415 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((f ∈ n ∧ ¬ w ∈ f) → (f
∪ {w}) ∈ (n
+c 1c)) |
84 | 79, 81, 83 | syl2anc 642 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → (f
∪ {w}) ∈ (n
+c 1c)) |
85 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = (n
+c 1c) → ((e ∪ {z})
∈ m
↔ (e ∪ {z}) ∈ (n +c
1c))) |
86 | | eleq2 2414 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (m = (n
+c 1c) → ((f ∪ {w})
∈ m
↔ (f ∪ {w}) ∈ (n +c
1c))) |
87 | 85, 86 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (m = (n
+c 1c) → (((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m) ↔ ((e ∪ {z})
∈ (n
+c 1c) ∧
(f ∪ {w}) ∈ (n +c
1c)))) |
88 | 87 | rspcev 2956 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((n +c 1c) ∈ Nn ∧ ((e ∪
{z}) ∈
(n +c
1c) ∧ (f ∪ {w})
∈ (n
+c 1c))) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m)) |
89 | 72, 78, 84, 88 | syl12anc 1180 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
(n ∈
Nn ∧ (e ∈ n ∧ f ∈ n))) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m)) |
90 | 89 | expr 598 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
n ∈ Nn ) → ((e
∈ n ∧ f ∈ n) →
∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m))) |
91 | 90 | rexlimdva 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → (∃n ∈ Nn (e ∈ n ∧ f ∈ n) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m))) |
92 | 70, 91 | syld 40 |
. . . . . . . . . . . . . . . . . 18
⊢ ((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → (∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m))) |
93 | 92 | imp 418 |
. . . . . . . . . . . . . . . . 17
⊢ (((k ∈ Nn ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) ∧
∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m)) |
94 | 93 | an32s 779 |
. . . . . . . . . . . . . . . 16
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m)) |
95 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (c = ℘1e → (c
∈ k
↔ ℘1e ∈ k)) |
96 | 95 | 3ad2ant2 977 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) →
(c ∈
k ↔ ℘1e ∈ k)) |
97 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (d = ℘1f → (d
∈ k
↔ ℘1f ∈ k)) |
98 | 97 | 3ad2ant2 977 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((b = (f ∪
{w}) ∧
d = ℘1f ∧ y = {w}) →
(d ∈
k ↔ ℘1f ∈ k)) |
99 | 96, 98 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
((c ∈
k ∧
d ∈
k) ↔ (℘1e ∈ k ∧ ℘1f ∈ k))) |
100 | | compleq 3244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (c = ℘1e → ∼ c
= ∼ ℘1e) |
101 | | eleq12 2415 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((x = {z} ∧ ∼ c =
∼ ℘1e) → (x
∈ ∼ c
↔ {z} ∈ ∼ ℘1e)) |
102 | 100, 101 | sylan2 460 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((x = {z} ∧ c = ℘1e) → (x
∈ ∼ c
↔ {z} ∈ ∼ ℘1e)) |
103 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {z} ∈
V |
104 | 103 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({z} ∈ ∼ ℘1e ↔ ¬ {z} ∈ ℘1e) |
105 | | snelpw1 4147 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({z} ∈ ℘1e ↔ z ∈ e) |
106 | 104, 105 | xchbinx 301 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({z} ∈ ∼ ℘1e ↔ ¬ z
∈ e) |
107 | 102, 106 | syl6bb 252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((x = {z} ∧ c = ℘1e) → (x
∈ ∼ c
↔ ¬ z ∈ e)) |
108 | 107 | ancoms 439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((c = ℘1e ∧ x = {z}) →
(x ∈
∼ c ↔ ¬ z ∈ e)) |
109 | 108 | 3adant1 973 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) →
(x ∈
∼ c ↔ ¬ z ∈ e)) |
110 | | compleq 3244 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (d = ℘1f → ∼ d
= ∼ ℘1f) |
111 | | eleq12 2415 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((y = {w} ∧ ∼ d =
∼ ℘1f) → (y
∈ ∼ d
↔ {w} ∈ ∼ ℘1f)) |
112 | 110, 111 | sylan2 460 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((y = {w} ∧ d = ℘1f) → (y
∈ ∼ d
↔ {w} ∈ ∼ ℘1f)) |
113 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {w} ∈
V |
114 | 113 | elcompl 3226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({w} ∈ ∼ ℘1f ↔ ¬ {w} ∈ ℘1f) |
115 | | snelpw1 4147 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({w} ∈ ℘1f ↔ w ∈ f) |
116 | 114, 115 | xchbinx 301 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({w} ∈ ∼ ℘1f ↔ ¬ w
∈ f) |
117 | 112, 116 | syl6bb 252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((y = {w} ∧ d = ℘1f) → (y
∈ ∼ d
↔ ¬ w ∈ f)) |
118 | 117 | ancoms 439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((d = ℘1f ∧ y = {w}) →
(y ∈
∼ d ↔ ¬ w ∈ f)) |
119 | 118 | 3adant1 973 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((b = (f ∪
{w}) ∧
d = ℘1f ∧ y = {w}) →
(y ∈
∼ d ↔ ¬ w ∈ f)) |
120 | 109, 119 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
((x ∈
∼ c ∧
y ∈ ∼
d) ↔ (¬ z ∈ e ∧ ¬ w ∈ f))) |
121 | 99, 120 | anbi12d 691 |
. . . . . . . . . . . . . . . . . 18
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
(((c ∈
k ∧
d ∈
k) ∧
(x ∈
∼ c ∧
y ∈ ∼
d)) ↔ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f)))) |
122 | 121 | anbi2d 684 |
. . . . . . . . . . . . . . . . 17
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
(((k ∈
Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) ↔ ((k
∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))))) |
123 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (a = (e ∪
{z}) → (a ∈ m ↔ (e
∪ {z}) ∈ m)) |
124 | 123 | 3ad2ant1 976 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) →
(a ∈
m ↔ (e ∪ {z})
∈ m)) |
125 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (b = (f ∪
{w}) → (b ∈ m ↔ (f
∪ {w}) ∈ m)) |
126 | 125 | 3ad2ant1 976 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((b = (f ∪
{w}) ∧
d = ℘1f ∧ y = {w}) →
(b ∈
m ↔ (f ∪ {w})
∈ m)) |
127 | 124, 126 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . 18
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
((a ∈
m ∧
b ∈
m) ↔ ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m))) |
128 | 127 | rexbidv 2636 |
. . . . . . . . . . . . . . . . 17
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
(∃m
∈ Nn (a ∈ m ∧ b ∈ m) ↔ ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m))) |
129 | 122, 128 | imbi12d 311 |
. . . . . . . . . . . . . . . 16
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
((((k ∈
Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → ∃m ∈ Nn (a ∈ m ∧ b ∈ m)) ↔ (((k
∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((℘1e ∈ k ∧ ℘1f ∈ k) ∧ (¬
z ∈
e ∧ ¬
w ∈
f))) → ∃m ∈ Nn ((e ∪ {z})
∈ m ∧ (f ∪
{w}) ∈
m)))) |
130 | 94, 129 | mpbiri 224 |
. . . . . . . . . . . . . . 15
⊢ (((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
(((k ∈
Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → ∃m ∈ Nn (a ∈ m ∧ b ∈ m))) |
131 | 130 | com12 27 |
. . . . . . . . . . . . . 14
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → (((a
= (e ∪ {z}) ∧ c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
∃m ∈ Nn (a ∈ m ∧ b ∈ m))) |
132 | 131 | exlimdvv 1637 |
. . . . . . . . . . . . 13
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → (∃z∃w((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
∃m ∈ Nn (a ∈ m ∧ b ∈ m))) |
133 | 132 | exlimdvv 1637 |
. . . . . . . . . . . 12
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → (∃e∃f∃z∃w((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) →
∃m ∈ Nn (a ∈ m ∧ b ∈ m))) |
134 | | eeanv 1913 |
. . . . . . . . . . . . 13
⊢ (∃e∃f(∃z(a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ ∃w(b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) ↔
(∃e∃z(a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ ∃f∃w(b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w}))) |
135 | | eeanv 1913 |
. . . . . . . . . . . . . 14
⊢ (∃z∃w((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) ↔
(∃z(a = (e ∪ {z})
∧ c =
℘1e ∧ x = {z}) ∧ ∃w(b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w}))) |
136 | 135 | 2exbii 1583 |
. . . . . . . . . . . . 13
⊢ (∃e∃f∃z∃w((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w})) ↔
∃e∃f(∃z(a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ ∃w(b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w}))) |
137 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ c ∈
V |
138 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ x ∈
V |
139 | 137, 138 | pw1eqadj 4333 |
. . . . . . . . . . . . . 14
⊢ (℘1a = (c ∪
{x}) ↔ ∃e∃z(a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z})) |
140 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ d ∈
V |
141 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ y ∈
V |
142 | 140, 141 | pw1eqadj 4333 |
. . . . . . . . . . . . . 14
⊢ (℘1b = (d ∪
{y}) ↔ ∃f∃w(b = (f ∪
{w}) ∧
d = ℘1f ∧ y = {w})) |
143 | 139, 142 | anbi12i 678 |
. . . . . . . . . . . . 13
⊢ ((℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) ↔ (∃e∃z(a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ ∃f∃w(b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w}))) |
144 | 134, 136,
143 | 3bitr4ri 269 |
. . . . . . . . . . . 12
⊢ ((℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) ↔ ∃e∃f∃z∃w((a = (e ∪
{z}) ∧
c = ℘1e ∧ x = {z}) ∧ (b = (f ∪ {w})
∧ d =
℘1f ∧ y = {w}))) |
145 | | elequ2 1715 |
. . . . . . . . . . . . . 14
⊢ (n = m →
(a ∈
n ↔ a ∈ m)) |
146 | | elequ2 1715 |
. . . . . . . . . . . . . 14
⊢ (n = m →
(b ∈
n ↔ b ∈ m)) |
147 | 145, 146 | anbi12d 691 |
. . . . . . . . . . . . 13
⊢ (n = m →
((a ∈
n ∧
b ∈
n) ↔ (a ∈ m ∧ b ∈ m))) |
148 | 147 | cbvrexv 2837 |
. . . . . . . . . . . 12
⊢ (∃n ∈ Nn (a ∈ n ∧ b ∈ n) ↔ ∃m ∈ Nn (a ∈ m ∧ b ∈ m)) |
149 | 133, 144,
148 | 3imtr4g 261 |
. . . . . . . . . . 11
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ ((c ∈ k ∧ d ∈ k) ∧ (x ∈ ∼ c ∧ y ∈ ∼ d))) → ((℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
150 | 149 | expr 598 |
. . . . . . . . . 10
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ (c ∈ k ∧ d ∈ k)) → ((x
∈ ∼ c
∧ y ∈ ∼ d)
→ ((℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
151 | 150 | rexlimdvv 2745 |
. . . . . . . . 9
⊢ (((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) ∧ (c ∈ k ∧ d ∈ k)) → (∃x ∈ ∼ c∃y ∈ ∼ d(℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
152 | 151 | rexlimdvva 2746 |
. . . . . . . 8
⊢ ((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) → (∃c ∈ k ∃d ∈ k ∃x ∈ ∼ c∃y ∈ ∼ d(℘1a = (c ∪
{x}) ∧
℘1b = (d ∪
{y})) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
153 | 54, 152 | syl5bi 208 |
. . . . . . 7
⊢ ((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) → ((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) →
∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
154 | 47, 153 | alrimi 1765 |
. . . . . 6
⊢ ((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) → ∀b((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) →
∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
155 | 44, 154 | alrimi 1765 |
. . . . 5
⊢ ((k ∈ Nn ∧ ∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) → ∀a∀b((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) →
∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
156 | 155 | ex 423 |
. . . 4
⊢ (k ∈ Nn → (∀a∀b((℘1a ∈ k ∧ ℘1b ∈ k) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ∀a∀b((℘1a ∈ (k +c 1c) ∧ ℘1b ∈ (k +c 1c)) →
∃n ∈ Nn (a ∈ n ∧ b ∈ n)))) |
157 | 1, 6, 11, 16, 21, 41, 156 | finds 4412 |
. . 3
⊢ (M ∈ Nn → ∀a∀b((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n))) |
158 | | elex 2868 |
. . . . . 6
⊢ (℘1A ∈ M → ℘1A ∈
V) |
159 | | pw1exb 4327 |
. . . . . 6
⊢ (℘1A ∈ V ↔
A ∈
V) |
160 | 158, 159 | sylib 188 |
. . . . 5
⊢ (℘1A ∈ M → A ∈ V) |
161 | | elex 2868 |
. . . . . 6
⊢ (℘1B ∈ M → ℘1B ∈
V) |
162 | | pw1exb 4327 |
. . . . . 6
⊢ (℘1B ∈ V ↔
B ∈
V) |
163 | 161, 162 | sylib 188 |
. . . . 5
⊢ (℘1B ∈ M → B ∈ V) |
164 | | pw1eq 4144 |
. . . . . . . . 9
⊢ (a = A →
℘1a = ℘1A) |
165 | 164 | eleq1d 2419 |
. . . . . . . 8
⊢ (a = A →
(℘1a ∈ M ↔ ℘1A ∈ M)) |
166 | | pw1eq 4144 |
. . . . . . . . 9
⊢ (b = B →
℘1b = ℘1B) |
167 | 166 | eleq1d 2419 |
. . . . . . . 8
⊢ (b = B →
(℘1b ∈ M ↔ ℘1B ∈ M)) |
168 | 165, 167 | bi2anan9 843 |
. . . . . . 7
⊢ ((a = A ∧ b = B) → ((℘1a ∈ M ∧ ℘1b ∈ M) ↔ (℘1A ∈ M ∧ ℘1B ∈ M))) |
169 | | eleq1 2413 |
. . . . . . . . 9
⊢ (a = A →
(a ∈
n ↔ A ∈ n)) |
170 | | eleq1 2413 |
. . . . . . . . 9
⊢ (b = B →
(b ∈
n ↔ B ∈ n)) |
171 | 169, 170 | bi2anan9 843 |
. . . . . . . 8
⊢ ((a = A ∧ b = B) → ((a
∈ n ∧ b ∈ n) ↔
(A ∈
n ∧
B ∈
n))) |
172 | 171 | rexbidv 2636 |
. . . . . . 7
⊢ ((a = A ∧ b = B) → (∃n ∈ Nn (a ∈ n ∧ b ∈ n) ↔ ∃n ∈ Nn (A ∈ n ∧ B ∈ n))) |
173 | 168, 172 | imbi12d 311 |
. . . . . 6
⊢ ((a = A ∧ b = B) → (((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) ↔ ((℘1A ∈ M ∧ ℘1B ∈ M) → ∃n ∈ Nn (A ∈ n ∧ B ∈ n)))) |
174 | 173 | spc2gv 2943 |
. . . . 5
⊢ ((A ∈ V ∧ B ∈ V) → (∀a∀b((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ((℘1A ∈ M ∧ ℘1B ∈ M) → ∃n ∈ Nn (A ∈ n ∧ B ∈ n)))) |
175 | 160, 163,
174 | syl2an 463 |
. . . 4
⊢ ((℘1A ∈ M ∧ ℘1B ∈ M) → (∀a∀b((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ((℘1A ∈ M ∧ ℘1B ∈ M) → ∃n ∈ Nn (A ∈ n ∧ B ∈ n)))) |
176 | 175 | pm2.43b 46 |
. . 3
⊢ (∀a∀b((℘1a ∈ M ∧ ℘1b ∈ M) → ∃n ∈ Nn (a ∈ n ∧ b ∈ n)) → ((℘1A ∈ M ∧ ℘1B ∈ M) → ∃n ∈ Nn (A ∈ n ∧ B ∈ n))) |
177 | 157, 176 | syl 15 |
. 2
⊢ (M ∈ Nn → ((℘1A ∈ M ∧ ℘1B ∈ M) → ∃n ∈ Nn (A ∈ n ∧ B ∈ n))) |
178 | 177 | 3impib 1149 |
1
⊢ ((M ∈ Nn ∧ ℘1A ∈ M ∧ ℘1B ∈ M) → ∃n ∈ Nn (A ∈ n ∧ B ∈ n)) |