NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  truimtru GIF version

Theorem truimtru 1344
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truimtru (( ⊤ → ⊤ ) ↔ ⊤ )

Proof of Theorem truimtru
StepHypRef Expression
1 id 19 . 2 ( ⊤ → ⊤ )
21bitru 1326 1 (( ⊤ → ⊤ ) ↔ ⊤ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wtru 1316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-tru 1319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator