Theorem isosctrlem1ALTRO
Description: Lemma for isosctr. The proof of isosctrlem1ALTVD is a Virtual Deduction proof based on Saveliy Skresanov's proof of isosctrlem1. The proof of isosctrlem1ALTVD is verified by automatically transforming it into the Metamath proof of isosctrlem1ALT using completeusersproof, which is verified by the Metamath program. The proof of isosctrlem1ALTRO is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 22-Apr-2018.)
Assertion
Ref Expression
isosctrlem1ALTRO ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ 𝜋)

Proof of Theorem isosctrlem1ALTRO
StepHypRefExpression
1   id (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2   ax1cn 1 ∈ ℂ
d41   subeq0 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
d26d41 biimpd ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
d1d26 idi ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
32, 1, d1 sylancr (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
43 con3d (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0))
d42   df-ne ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0)
5d42 biimpri (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0)
64, 5 syl6 (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0))
76 imp ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
81 releabsd (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
9   id ((abs‘𝐴) = 1 → (abs‘𝐴) = 1)
d28 adantr ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴))
d39 adantl ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
10d2, d3 breqtrd ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1)
111 recld (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
d43   1re 1 ∈ ℝ
d4d43 a1i (1 ∈ ℂ → 1 ∈ ℝ)
122, d4 ax-mp 1 ∈ ℝ
d44   lesub1 (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))))
d32d44 3impcombi ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
d5d32 idi ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
1312, 11, 10, d5 eel0121 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
141 recld (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1514 recnd (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
1615 subidd (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
d616 adantr ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
17d6, 13 eqbrtrrd ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴)))
d812 a1i ( ⊤ → 1 ∈ ℝ)
d9d8 rered ( ⊤ → (ℜ‘1) = 1)
18d9 trud (ℜ‘1) = 1
d45   oveq1 ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)))
d10d45 eqcomd ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
1918, d10 ax-mp (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))
d46   resub ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
d34d46 eqcomd ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
d11d34 idi ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
202, 1, d11 sylancr (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
2119, 20 syl5eq (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
d1221 adantr ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
2217, d12 breqtrd ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴)))
d142 a1i (𝐴 ∈ ℂ → 1 ∈ ℂ)
23d14, 1 subcld (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ)
d47   argrege0 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
d35d47 3coml (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
d16d35 3com13 (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
2423, 22, 7, d16 eel12131 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
25   pire 𝜋 ∈ ℝ
26   2re 2 ∈ ℝ
27   2ne0 2 ≠ 0
2825, 26, 27 redivcli (𝜋 / 2) ∈ ℝ
2928 rexri (𝜋 / 2) ∈ ℝ*
3028 renegcli -(𝜋 / 2) ∈ ℝ
3130 rexri -(𝜋 / 2) ∈ ℝ*
d17   iccleub ((-(𝜋 / 2) ∈ ℝ* ∧ (𝜋 / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (𝜋 / 2))
3231, 29, 24, d17 eel001 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (𝜋 / 2))
33   pipos 0 < 𝜋
3425, 33 elrpii 𝜋 ∈ ℝ+
d18   rphalflt (𝜋 ∈ ℝ+ → (𝜋 / 2) < 𝜋)
3534, d18 ax-mp (𝜋 / 2) < 𝜋
d1923 adantr ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
36d19, 7 logcld ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
3736 imcld ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
d2128 a1i ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝜋 / 2) ∈ ℝ)
d2235 a1i ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝜋 / 2) < 𝜋)
d2325 a1i ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝜋 ∈ ℝ)
d2437 3adant2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
38d24, d21, d23, 32, d22 lelttrd ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < 𝜋)
qedd24, 38 ltned ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ 𝜋)
  Copyright terms: Public domain W3C validator