Proof of Theorem isosctrlem1ALTRO
| Step | Hyp | Ref | Expression |
| 1 | | id | ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
|
| 2 | | ax1cn | ⊢ 1 ∈ ℂ
|
| d41 | | subeq0 | ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
|
| d26 | d41 | biimpd | ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
|
| d1 | d26 | idi | ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 → 1 = 𝐴))
|
| 3 | 2, 1, d1 | sylancr | ⊢ (𝐴 ∈ ℂ → ((1 − 𝐴) = 0 → 1 = 𝐴))
|
| 4 | 3 | con3d | ⊢ (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0))
|
| d42 | | df-ne | ⊢ ((1 − 𝐴) ≠ 0 ↔ ¬ (1 − 𝐴) = 0)
|
| 5 | d42 | biimpri | ⊢ (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0)
|
| 6 | 4, 5 | syl6 | ⊢ (𝐴 ∈ ℂ → (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0))
|
| 7 | 6 | imp | ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
|
| 8 | 1 | releabsd | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
|
| 9 | | id | ⊢ ((abs‘𝐴) = 1 → (abs‘𝐴) = 1)
|
| d2 | 8 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴))
|
| d3 | 9 | adantl | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (abs‘𝐴) = 1)
|
| 10 | d2, d3 | breqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1)
|
| 11 | 1 | recld | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
|
| d43 | | 1re | ⊢ 1 ∈ ℝ
|
| d4 | d43 | a1i | ⊢ (1 ∈ ℂ → 1 ∈ ℝ)
|
| 12 | 2, d4 | ax-mp | ⊢ 1 ∈ ℝ
|
| d44 | | lesub1 | ⊢ (((ℜ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((ℜ‘𝐴) ≤ 1 ↔ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))))
|
| d32 | d44 | 3impcombi | ⊢ ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
|
| d5 | d32 | idi | ⊢ ((1 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
|
| 13 | 12, 11, 10, d5 | eel0121 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
|
| 14 | 1 | recld | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
|
| 15 | 14 | recnd | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
|
| 16 | 15 | subidd | ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
|
| d6 | 16 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
|
| 17 | d6, 13 | eqbrtrrd | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴)))
|
| d8 | 12 | a1i | ⊢ ( ⊤ → 1 ∈ ℝ)
|
| d9 | d8 | rered | ⊢ ( ⊤ → (ℜ‘1) = 1)
|
| 18 | d9 | trud | ⊢ (ℜ‘1) = 1
|
| d45 | | oveq1 | ⊢ ((ℜ‘1) = 1 → ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)))
|
| d10 | d45 | eqcomd | ⊢ ((ℜ‘1) = 1 → (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
|
| 19 | 18, d10 | ax-mp | ⊢ (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))
|
| d46 | | resub | ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
|
| d34 | d46 | eqcomd | ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
|
| d11 | d34 | idi | ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
|
| 20 | 2, 1, d11 | sylancr | ⊢ (𝐴 ∈ ℂ → ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
|
| 21 | 19, 20 | syl5eq | ⊢ (𝐴 ∈ ℂ → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
|
| d12 | 21 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)))
|
| 22 | 17, d12 | breqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴)))
|
| d14 | 2 | a1i | ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ)
|
| 23 | d14, 1 | subcld | ⊢ (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ)
|
| d47 | | argrege0 | ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
|
| d35 | d47 | 3coml | ⊢ (((1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ∈ ℂ) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
|
| d16 | d35 | 3com13 | ⊢ (((1 − 𝐴) ∈ ℂ ∧ 0 ≤ (ℜ‘(1 − 𝐴)) ∧ (1 − 𝐴) ≠ 0) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
|
| 24 | 23, 22, 7, d16 | eel12131 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)))
|
| 25 | | pire | ⊢ 𝜋 ∈ ℝ
|
| 26 | | 2re | ⊢ 2 ∈ ℝ
|
| 27 | | 2ne0 | ⊢ 2 ≠ 0
|
| 28 | 25, 26, 27 | redivcli | ⊢ (𝜋 / 2) ∈ ℝ
|
| 29 | 28 | rexri | ⊢ (𝜋 / 2) ∈ ℝ*
|
| 30 | 28 | renegcli | ⊢ -(𝜋 / 2) ∈ ℝ
|
| 31 | 30 | rexri | ⊢ -(𝜋 / 2) ∈ ℝ*
|
| d17 | | iccleub | ⊢ ((-(𝜋 / 2) ∈ ℝ* ∧ (𝜋 / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (𝜋 / 2))
|
| 32 | 31, 29, 24, d17 | eel001 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (𝜋 / 2))
|
| 33 | | pipos | ⊢ 0 < 𝜋
|
| 34 | 25, 33 | elrpii | ⊢ 𝜋 ∈ ℝ+
|
| d18 | | rphalflt | ⊢ (𝜋 ∈ ℝ+ → (𝜋 / 2) < 𝜋)
|
| 35 | 34, d18 | ax-mp | ⊢ (𝜋 / 2) < 𝜋
|
| d19 | 23 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
|
| 36 | d19, 7 | logcld | ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
|
| 37 | 36 | imcld | ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
|
| d21 | 28 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝜋 / 2) ∈ ℝ)
|
| d22 | 35 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (𝜋 / 2) < 𝜋)
|
| d23 | 25 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 𝜋 ∈ ℝ)
|
| d24 | 37 | 3adant2 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
|
| 38 | d24, d21, d23, 32, d22 | lelttrd | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < 𝜋)
|
| qed | d24, 38 | ltned | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ 𝜋)
|