Description: Lemma for isosctr. The proof of
isosctrlem1ALTVD is a Virtual
Deduction proof based on Saveliy Skresanov's proof of isosctrlem1.
The proof of isosctrlem1ALTVD is
verified by automatically transforming it into the Metamath proof of
isosctrlem1ALT using completeusersproof, which is verified by the
Metamath program. The proof of
isosctrlem1ALTRO is a form of the
completed proof which preserves the Virtual Deduction proof's step
numbers and their ordering. (Contributed by Alan Sare, 22-Apr-2018.)
Assertion
Ref
| Expression |
isosctrlem1ALTVD |
⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 , ¬ 1 = 𝐴 ) ▶ (ℑ‘(log‘(1
− 𝐴))) ≠ 𝜋 ) |
Proof of Theorem isosctrlem1ALTVD
Step | Hyp | Expression |
1 | | ⊢ ( 𝐴 ∈ ℂ ▶ 𝐴 ∈ ℂ )
| 2 | | ⊢ 1 ∈ ℂ
| 3 | 1, 2 | ⊢ ( 𝐴 ∈ ℂ ▶ ((1 − 𝐴) = 0 → 1 = 𝐴) )
| 4 | 3 | ⊢ ( 𝐴 ∈ ℂ ▶ (¬ 1 = 𝐴 → ¬ (1 − 𝐴) = 0) )
| 5 | | ⊢ (¬ (1 − 𝐴) = 0 → (1 − 𝐴) ≠ 0)
| 6 | 4, 5 | ⊢ ( 𝐴 ∈ ℂ ▶ (¬ 1 = 𝐴 → (1 − 𝐴) ≠ 0) )
| 7 | 6 | ⊢ ( ( 𝐴 ∈ ℂ , ¬ 1 = 𝐴 ) ▶ (1 − 𝐴) ≠ 0 )
| 8 | 1 | ⊢ ( 𝐴 ∈ ℂ ▶ (ℜ‘𝐴) ≤ (abs‘𝐴) )
| 9 | | ⊢ ( (abs‘𝐴) = 1 ▶ (abs‘𝐴) = 1 )
| 10 | 8, 9 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 ) ▶ (ℜ‘𝐴) ≤ 1 )
| 11 | 1 | ⊢ ( 𝐴 ∈ ℂ ▶ (ℜ‘𝐴) ∈ ℝ )
| 12 | 2 | ⊢ 1 ∈ ℝ
| 13 | 11, 12, 10 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 ) ▶ ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)) )
| 14 | 1 | ⊢ ( 𝐴 ∈ ℂ ▶ (ℜ‘𝐴) ∈ ℝ )
| 15 | 14 | ⊢ ( 𝐴 ∈ ℂ ▶ (ℜ‘𝐴) ∈ ℂ )
| 16 | 15 | ⊢ ( 𝐴 ∈ ℂ ▶ ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0 )
| 17 | 13, 16 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 ) ▶ 0 ≤ (1 − (ℜ‘𝐴)) )
| 18 | 12 | ⊢ (ℜ‘1) = 1
| 19 | 18 | ⊢ (1 − (ℜ‘𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))
| 20 | 1, 2 | ⊢ ( 𝐴 ∈ ℂ ▶ ((ℜ‘1) − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)) )
| 21 | 19, 20 | ⊢ ( 𝐴 ∈ ℂ ▶ (1 − (ℜ‘𝐴)) = (ℜ‘(1 − 𝐴)) )
| 22 | 17, 21 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 ) ▶ 0 ≤ (ℜ‘(1 − 𝐴)) )
| 23 | 1, 2 | ⊢ ( 𝐴 ∈ ℂ ▶ (1 − 𝐴) ∈ ℂ )
| 24 | 23, 7, 22 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 , ¬ 1 = 𝐴 ) ▶ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(𝜋 / 2)[,](𝜋 / 2)) )
| 25 | | ⊢ 𝜋 ∈ ℝ
| 26 | | ⊢ 2 ∈ ℝ
| 27 | | ⊢ 2 ≠ 0
| 28 | 25, 26, 27 | ⊢ (𝜋 / 2) ∈ ℝ
| 29 | 28 | ⊢ (𝜋 / 2) ∈ ℝ*
| 30 | 28 | ⊢ -(𝜋 / 2) ∈ ℝ
| 31 | 30 | ⊢ -(𝜋 / 2) ∈ ℝ*
| 32 | 31, 29, 24 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 , ¬ 1 = 𝐴 ) ▶ (ℑ‘(log‘(1 − 𝐴))) ≤ (𝜋 / 2) )
| 33 | | ⊢ 0 < 𝜋
| 34 | 33, 25 | ⊢ 𝜋 ∈ ℝ+
| 35 | 34 | ⊢ (𝜋 / 2) < 𝜋
| 36 | 7, 23 | ⊢ ( ( 𝐴 ∈ ℂ , ¬ 1 = 𝐴 ) ▶ (log‘(1 − 𝐴)) ∈ ℂ )
| 37 | 36 | ⊢ ( ( 𝐴 ∈ ℂ , ¬ 1 = 𝐴 ) ▶ (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ )
| 38 | 37, 28, 25, 32, 35 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 , ¬ 1 = 𝐴 ) ▶ (ℑ‘(log‘(1 − 𝐴))) < 𝜋 )
| qed | 38, 37 | ⊢ ( ( 𝐴 ∈ ℂ , (abs‘𝐴) = 1 , ¬ 1 = 𝐴 ) ▶ (ℑ‘(log‘(1 − 𝐴))) ≠ 𝜋 )
|
|