Proof of Theorem sineq0ALTRO
| | | ⊢ |
⊢
|
Proof of lemma1 |
⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
1 | | sinval | ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)))
|
2 | | id | ⊢ ((sin‘𝐴) = 0 → (sin‘𝐴) = 0)
|
3 | 1, 2 | sylan9req | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0)
|
4 | | axicn | ⊢ i ∈ ℂ
|
5 | | 2cn | ⊢ 2 ∈ ℂ
|
6 | 5, 4 | mulcli | ⊢ (2 · i) ∈ ℂ
|
7 | | id | ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
|
d1 | 4 | a1i | ⊢ (𝐴 ∈ ℂ → i ∈ ℂ)
|
8 | d1, 7 | mulcld | ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
|
d3 | | efcl | ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
|
9 | 8, d3 | syl | ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ)
|
10 | 4 | negcli | ⊢ -i ∈ ℂ
|
d4 | 10 | a1i | ⊢ (𝐴 ∈ ℂ → -i ∈ ℂ)
|
11 | d4, 7 | mulcld | ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ)
|
d6 | | efcl | ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
|
12 | 11, d6 | syl | ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ)
|
13 | 9, 12 | subcld | ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ)
|
14 | | ine0 | ⊢ i ≠ 0
|
15 | | 2ne0 | ⊢ 2 ≠ 0
|
16 | 5, 4, 15, 14 | mulne0i | ⊢ (2 · i) ≠ 0
|
d7 | 6 | a1i | ⊢ (𝐴 ∈ ℂ → (2 · i) ∈ ℂ)
|
d8 | 16 | a1i | ⊢ (𝐴 ∈ ℂ → (2 · i) ≠ 0)
|
17 | 13, d7, d8 | diveq0ad | ⊢ (𝐴 ∈ ℂ → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
|
d10 | 17 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0))
|
18 | 3, d10 | mpbid | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0)
|
19 | 9, 12 | subeq0ad | ⊢ (𝐴 ∈ ℂ → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
|
d12 | 19 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))))
|
20 | 18, d12 | mpbid | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)))
|
21 | 20 | oveq2d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
|
d14 | | efadd | ⊢ (((i · 𝐴) ∈ ℂ ∧ (-i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
|
22 | 8, 11, d14 | syl2anc | ⊢ (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
|
23 | 4 | negidi | ⊢ (i + -i) = 0
|
24 | 23 | oveq1i | ⊢ ((i + -i) · 𝐴) = (0 · 𝐴)
|
25 | d1, d4, 7 | adddird | ⊢ (𝐴 ∈ ℂ → ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)))
|
26 | 24, 25 | syl5reqr | ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = (0 · 𝐴))
|
27 | 7 | mul02d | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
|
28 | 26, 27 | eqtrd | ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (-i · 𝐴)) = 0)
|
29 | 28 | fveq2d | ⊢ (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
|
30 | | ef0 | ⊢ (exp‘0) = 1
|
d16 | 22 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))))
|
31 | 21, d16 | eqtr4d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴))))
|
d18 | 30 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘0) = 1)
|
d19 | 29 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0))
|
32 | 31, d19, d18 | 3eqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = 1)
|
d21 | | efadd | ⊢ (((i · 𝐴) ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
|
33 | 8, 8, d21 | syl2anc | ⊢ (𝐴 ∈ ℂ → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
|
34 | 8 | 2timesd | ⊢ (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
|
d22 | 5 | a1i | ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ)
|
35 | d22, d1, 7 | mul12d | ⊢ (𝐴 ∈ ℂ → (2 · (i · 𝐴)) = (i · (2 · 𝐴)))
|
36 | 35, 34 | eqtr3d | ⊢ (𝐴 ∈ ℂ → (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)))
|
37 | 36 | fveq2d | ⊢ (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))))
|
38 | 37, 33 | eqtrd | ⊢ (𝐴 ∈ ℂ → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
|
d24 | 38 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))))
|
39 | d24, 32 | eqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (exp‘(i · (2 · 𝐴))) = 1)
|
40 | 39 | fveq2d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1))
|
41 | | abs1 | ⊢ (abs‘1) = 1
|
42 | 40, 41 | syl6eq | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(exp‘(i · (2 · 𝐴)))) = 1)
|
43 | d22, 7 | mulcld | ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) ∈ ℂ)
|
d138 | | absefib | ⊢ ((2 · 𝐴) ∈ ℂ → ((2 · 𝐴) ∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1))
|
d63 | d138 | biimparc | ⊢ (((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈ ℝ)
|
d27 | d63 | ancoms | ⊢ (((2 · 𝐴) ∈ ℂ ∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈ ℝ)
|
44 | 43, 42, d27 | eel121 | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (2 · 𝐴) ∈ ℝ)
|
d139 | | 2re | ⊢ 2 ∈ ℝ
|
d65 | d139 | a1i | ⊢ (2 ∈ ℂ → 2 ∈ ℝ)
|
45 | 5, d65 | ax-mp | ⊢ 2 ∈ ℝ
|
d28 | 15 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ≠ 0)
|
d29 | 45 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 2 ∈ ℝ)
|
d30 | 7 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℂ)
|
d140 | | mulre | ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈ ℝ))
|
d84 | d140 | 4animp1 | ⊢ ((((𝐴 ∈ ℂ ∧ 2 ∈ ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
|
d32 | d84 | 4an31 | ⊢ ((((2 ≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
|
lemma1 | d28, d29, d30, 44, d32 | eel1111 | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝐴 ∈ ℝ)
|
⊢
|
Proof of lemma2 |
⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋))))))) |
Step | Hyp | Ref | Expression |
47 | | pire | ⊢ 𝜋 ∈ ℝ
|
48 | | pipos | ⊢ 0 < 𝜋
|
49 | | 0re | ⊢ 0 ∈ ℝ
|
50 | 49, 47, 48 | ltleii | ⊢ 0 ≤ 𝜋
|
d141 | | gt0ne0 | ⊢ ((𝜋 ∈ ℝ ∧ 0 < 𝜋) → 𝜋 ≠ 0)
|
d93 | d141 | 3adant3 | ⊢ ((𝜋 ∈ ℝ ∧ 0 < 𝜋 ∧ 0 ≤ 𝜋) → 𝜋 ≠ 0)
|
d33 | d93 | 3com23 | ⊢ ((𝜋 ∈ ℝ ∧ 0 ≤ 𝜋 ∧ 0 < 𝜋) → 𝜋 ≠ 0)
|
51 | 47, 50, 48, d33 | mp3an | ⊢ 𝜋 ≠ 0
|
d34 | 47 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝜋 ∈ ℝ)
|
d35 | 51 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝜋 ≠ 0)
|
52 | lemma1, d34, d35 | redivcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / 𝜋) ∈ ℝ)
|
53 | 52 | flcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / 𝜋)) ∈ ℤ)
|
54 | 53 | zcnd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (⌊‘(𝐴 / 𝜋)) ∈ ℂ)
|
55 | 47 | recni | ⊢ 𝜋 ∈ ℂ
|
d37 | 55 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝜋 ∈ ℂ)
|
56 | 54, d37 | mulneg1d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -((⌊‘(𝐴 / 𝜋)) · 𝜋))
|
57 | 54, d37 | mulcomd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((⌊‘(𝐴 / 𝜋)) · 𝜋) = (𝜋 · (⌊‘(𝐴 / 𝜋))))
|
58 | 57 | negeqd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -((⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋))))
|
59 | 56, 58 | eqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋))))
|
60 | d37, 54 | mulcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝜋 · (⌊‘(𝐴 / 𝜋))) ∈ ℂ)
|
61 | d30, 60 | negsubd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))) = (𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
62 | 60 | negcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(𝜋 · (⌊‘(𝐴 / 𝜋))) ∈ ℂ)
|
63 | 54 | negcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / 𝜋)) ∈ ℂ)
|
64 | 63, d37 | mulcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / 𝜋)) · 𝜋) ∈ ℂ)
|
d142 | | oveq2 | ⊢ ((-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋))) → (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
d96 | d142 | ad3antrrr | ⊢ (((((-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋))) ∧ -(𝜋 · (⌊‘(𝐴 / 𝜋))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / 𝜋)) · 𝜋) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
d46 | d96 | 4an4132 | ⊢ ((((𝐴 ∈ ℂ ∧ (-(⌊‘(𝐴 / 𝜋)) · 𝜋) ∈ ℂ) ∧ -(𝜋 · (⌊‘(𝐴 / 𝜋))) ∈ ℂ) ∧ (-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋)))) → (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
65 | d30, 64, 62, 59, d46 | eel1111 | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
66 | 65, 61 | eqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
67 | 66 | fveq2d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋))) = (sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋))))))
|
lemma2 | 67 | fveq2d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))))
|
⊢
|
Proof of lemma3 |
⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod 𝜋)) = 0) |
Step | Hyp | Ref | Expression |
69 | | modval | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+) → (𝐴 mod 𝜋) = (𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))
|
70 | 69 | fveq2d | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+) → (sin‘(𝐴 mod 𝜋)) = (sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋))))))
|
71 | 70 | fveq2d | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+) → (abs‘(sin‘(𝐴 mod 𝜋))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))))
|
d143 | | abssinper | ⊢ ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / 𝜋)) ∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) = (abs‘(sin‘𝐴)))
|
72 | d143 | eqcomd | ⊢ ((𝐴 ∈ ℂ ∧ -(⌊‘(𝐴 / 𝜋)) ∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))))
|
73 | 72 | ex | ⊢ (𝐴 ∈ ℂ → (-(⌊‘(𝐴 / 𝜋)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋))))))
|
74 | 53 | znegcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → -(⌊‘(𝐴 / 𝜋)) ∈ ℤ)
|
d47 | 73 | adantr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (-(⌊‘(𝐴 / 𝜋)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋))))))
|
75 | 74, d47 | mpd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))))
|
76 | 47, 48 | elrpii | ⊢ 𝜋 ∈ ℝ+
|
77 | 76, 71 | mpan2 | ⊢ (𝐴 ∈ ℝ → (abs‘(sin‘(𝐴 mod 𝜋))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))))
|
78 | lemma1, 77 | syl | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod 𝜋))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))))
|
79 | 75, lemma2 | eqtrd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))))
|
80 | 79, 78 | eqtr4d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 mod 𝜋))))
|
81 | 2 | fveq2d | ⊢ ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = (abs‘0))
|
82 | | abs0 | ⊢ (abs‘0) = 0
|
83 | 81, 82 | syl6eq | ⊢ ((sin‘𝐴) = 0 → (abs‘(sin‘𝐴)) = 0)
|
d49 | 83 | adantl | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘𝐴)) = 0)
|
84 | 80, d49 | eqtr3d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (abs‘(sin‘(𝐴 mod 𝜋))) = 0)
|
d51 | 76 | a1i | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 𝜋 ∈ ℝ+)
|
85 | lemma1, d51 | modcld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod 𝜋) ∈ ℝ)
|
86 | 85 | recnd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod 𝜋) ∈ ℂ)
|
87 | 86 | sincld | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod 𝜋)) ∈ ℂ)
|
lemma3 | 87, 84 | abs00d | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (sin‘(𝐴 mod 𝜋)) = 0)
|
⊢
|
Proof of lemma4 |
⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod 𝜋)) |
Step | Hyp | Ref | Expression |
89 | | ltne | ⊢ ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod 𝜋))) → (sin‘(𝐴 mod 𝜋)) ≠ 0)
|
90 | 89 | neneqd | ⊢ ((0 ∈ ℝ ∧ 0 < (sin‘(𝐴 mod 𝜋))) → ¬ (sin‘(𝐴 mod 𝜋)) = 0)
|
91 | 90 | expcom | ⊢ (0 < (sin‘(𝐴 mod 𝜋)) → (0 ∈ ℝ → ¬ (sin‘(𝐴 mod 𝜋)) = 0))
|
92 | 49, 91 | mpi | ⊢ (0 < (sin‘(𝐴 mod 𝜋)) → ¬ (sin‘(𝐴 mod 𝜋)) = 0)
|
93 | 92 | con3i | ⊢ (¬ ¬ (sin‘(𝐴 mod 𝜋)) = 0 → ¬ 0 < (sin‘(𝐴 mod 𝜋)))
|
d144 | | notnot | ⊢ ((sin‘(𝐴 mod 𝜋)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod 𝜋)) = 0)
|
94 | d144 | bicomi | ⊢ (¬ ¬ (sin‘(𝐴 mod 𝜋)) = 0 ↔ (sin‘(𝐴 mod 𝜋)) = 0)
|
95 | 94, 93 | sylbir | ⊢ ((sin‘(𝐴 mod 𝜋)) = 0 → ¬ 0 < (sin‘(𝐴 mod 𝜋)))
|
96 | lemma3, 95 | syl | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (sin‘(𝐴 mod 𝜋)))
|
97 | | sinq12gt0 | ⊢ ((𝐴 mod 𝜋) ∈ (0(,)𝜋) → 0 < (sin‘(𝐴 mod 𝜋)))
|
98 | 96, 97 | nsyl | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (𝐴 mod 𝜋) ∈ (0(,)𝜋))
|
99 | 49 | rexri | ⊢ 0 ∈ ℝ*
|
100 | 47 | rexri | ⊢ 𝜋 ∈ ℝ*
|
d53 | | elioo2 | ⊢ ((0 ∈ ℝ* ∧ 𝜋 ∈ ℝ*) → ((𝐴 mod 𝜋) ∈ (0(,)𝜋) ↔ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋)))
|
101 | 99, 100, d53 | mp2an | ⊢ ((𝐴 mod 𝜋) ∈ (0(,)𝜋) ↔ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋))
|
102 | 101 | notbii | ⊢ (¬ (𝐴 mod 𝜋) ∈ (0(,)𝜋) ↔ ¬ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋))
|
103 | 98, 102 | sylib | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋))
|
104 | | 3anan12 | ⊢ (((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋) ↔ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)))
|
105 | 104 | notbii | ⊢ (¬ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋) ↔ ¬ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)))
|
106 | 103, 105 | sylib | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)))
|
d120 | | modlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+) → (𝐴 mod 𝜋) < 𝜋)
|
d54 | d120 | ancoms | ⊢ ((𝜋 ∈ ℝ+ ∧ 𝐴 ∈ ℝ) → (𝐴 mod 𝜋) < 𝜋)
|
107 | 76, lemma1, d54 | sylancr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod 𝜋) < 𝜋)
|
108 | 85, 107 | jca | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋))
|
d55 | | not12an2impnot1 | ⊢ ((¬ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)) → ¬ 0 < (𝐴 mod 𝜋))
|
lemma4 | 106, 108, d55 | syl2anc | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → ¬ 0 < (𝐴 mod 𝜋))
|
⊢
|
Proof of sineq0ALTRO |
⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / 𝜋) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
d122 | | modge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝜋))
|
d56 | d122 | ancoms | ⊢ ((𝜋 ∈ ℝ+ ∧ 𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod 𝜋))
|
110 | 76, lemma1, d56 | sylancr | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 ≤ (𝐴 mod 𝜋))
|
d145 | | leloe | ⊢ ((0 ∈ ℝ ∧ (𝐴 mod 𝜋) ∈ ℝ) → (0 ≤ (𝐴 mod 𝜋) ↔ (0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋))))
|
d129 | d145 | biimp3a | ⊢ ((0 ∈ ℝ ∧ (𝐴 mod 𝜋) ∈ ℝ ∧ 0 ≤ (𝐴 mod 𝜋)) → (0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋)))
|
d57 | d129 | idi | ⊢ ((0 ∈ ℝ ∧ (𝐴 mod 𝜋) ∈ ℝ ∧ 0 ≤ (𝐴 mod 𝜋)) → (0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋)))
|
111 | 49, 85, 110, d57 | eel011 | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋)))
|
d146 | | pm2.53 | ⊢ ((0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋)) → (¬ 0 < (𝐴 mod 𝜋) → 0 = (𝐴 mod 𝜋)))
|
d130 | d146 | imp | ⊢ (((0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋)) ∧ ¬ 0 < (𝐴 mod 𝜋)) → 0 = (𝐴 mod 𝜋))
|
d58 | d130 | ancoms | ⊢ ((¬ 0 < (𝐴 mod 𝜋) ∧ (0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋))) → 0 = (𝐴 mod 𝜋))
|
112 | lemma4, 111, d58 | syl2anc | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → 0 = (𝐴 mod 𝜋))
|
113 | 112 | eqcomd | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 mod 𝜋) = 0)
|
d147 | | mod0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+) → ((𝐴 mod 𝜋) = 0 ↔ (𝐴 / 𝜋) ∈ ℤ))
|
d136 | d147 | biimp3a | ⊢ ((𝐴 ∈ ℝ ∧ 𝜋 ∈ ℝ+ ∧ (𝐴 mod 𝜋) = 0) → (𝐴 / 𝜋) ∈ ℤ)
|
d59 | d136 | 3com12 | ⊢ ((𝜋 ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ (𝐴 mod 𝜋) = 0) → (𝐴 / 𝜋) ∈ ℤ)
|
114 | 76, lemma1, 113, d59 | eel011 | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) = 0) → (𝐴 / 𝜋) ∈ ℤ)
|
115 | 114 | ex | ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 → (𝐴 / 𝜋) ∈ ℤ))
|
116 | | id | ⊢ ((𝐴 / 𝜋) ∈ ℤ → (𝐴 / 𝜋) ∈ ℤ)
|
d60 | | sinkpi | ⊢ ((𝐴 / 𝜋) ∈ ℤ → (sin‘((𝐴 / 𝜋) · 𝜋)) = 0)
|
117 | 116, d60 | syl | ⊢ ((𝐴 / 𝜋) ∈ ℤ → (sin‘((𝐴 / 𝜋) · 𝜋)) = 0)
|
d61 | 55 | a1i | ⊢ (𝐴 ∈ ℂ → 𝜋 ∈ ℂ)
|
d62 | 51 | a1i | ⊢ (𝐴 ∈ ℂ → 𝜋 ≠ 0)
|
118 | 7, d61, d62 | divcan1d | ⊢ (𝐴 ∈ ℂ → ((𝐴 / 𝜋) · 𝜋) = 𝐴)
|
119 | 118 | fveq2d | ⊢ (𝐴 ∈ ℂ → (sin‘((𝐴 / 𝜋) · 𝜋)) = (sin‘𝐴))
|
120 | 119, 117 | sylan9req | ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 / 𝜋) ∈ ℤ) → (sin‘𝐴) = 0)
|
121 | 120 | ex | ⊢ (𝐴 ∈ ℂ → ((𝐴 / 𝜋) ∈ ℤ → (sin‘𝐴) = 0))
|
qed | 115, 121 | impbid | ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / 𝜋) ∈ ℤ))
|