| | | β’ |
β’
|
Proof of lemma1 |
β’ ((π΄ β β β§ (sinβπ΄) = 0) β π΄ β β) |
Step | Hyp | Ref | Expression |
1 | | sinval | β’ (π΄ β β β (sinβπ΄) = (((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) / (2 Β· i)))
|
2 | | id | β’ ((sinβπ΄) = 0 β (sinβπ΄) = 0)
|
3 | 1, 2 | sylan9req | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) / (2 Β· i)) = 0)
|
4 | | axicn | β’ i β β
|
5 | | 2cn | β’ 2 β β
|
6 | 5, 4 | mulcli | β’ (2 Β· i) β β
|
7 | | id | β’ (π΄ β β β π΄ β β)
|
d1 | 4 | a1i | β’ (π΄ β β β i β β)
|
8 | d1, 7 | mulcld | β’ (π΄ β β β (i Β· π΄) β β)
|
d3 | | efcl | β’ ((i Β· π΄) β β β (expβ(i Β· π΄)) β β)
|
9 | 8, d3 | syl | β’ (π΄ β β β (expβ(i Β· π΄)) β β)
|
10 | 4 | negcli | β’ -i β β
|
d4 | 10 | a1i | β’ (π΄ β β β -i β β)
|
11 | d4, 7 | mulcld | β’ (π΄ β β β (-i Β· π΄) β β)
|
d6 | | efcl | β’ ((-i Β· π΄) β β β (expβ(-i Β· π΄)) β β)
|
12 | 11, d6 | syl | β’ (π΄ β β β (expβ(-i Β· π΄)) β β)
|
13 | 9, 12 | subcld | β’ (π΄ β β β ((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) β β)
|
14 | | ine0 | β’ i β 0
|
15 | | 2ne0 | β’ 2 β 0
|
16 | 5, 4, 15, 14 | mulne0i | β’ (2 Β· i) β 0
|
d7 | 6 | a1i | β’ (π΄ β β β (2 Β· i) β β)
|
d8 | 16 | a1i | β’ (π΄ β β β (2 Β· i) β 0)
|
17 | 13, d7, d8 | diveq0ad | β’ (π΄ β β β ((((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) / (2 Β· i)) = 0 β ((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) = 0))
|
d10 | 17 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) / (2 Β· i)) = 0 β ((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) = 0))
|
18 | 3, d10 | mpbid | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) = 0)
|
19 | 9, 12 | subeq0ad | β’ (π΄ β β β (((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) = 0 β (expβ(i Β· π΄)) = (expβ(-i Β· π΄))))
|
d12 | 19 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (((expβ(i Β· π΄)) β (expβ(-i Β· π΄))) = 0 β (expβ(i Β· π΄)) = (expβ(-i Β· π΄))))
|
20 | 18, d12 | mpbid | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (expβ(i Β· π΄)) = (expβ(-i Β· π΄)))
|
21 | 20 | oveq2d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(-i Β· π΄))))
|
d14 | | efadd | β’ (((i Β· π΄) β β β§ (-i Β· π΄) β β) β (expβ((i Β· π΄) + (-i Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(-i Β· π΄))))
|
22 | 8, 11, d14 | syl2anc | β’ (π΄ β β β (expβ((i Β· π΄) + (-i Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(-i Β· π΄))))
|
23 | 4 | negidi | β’ (i + -i) = 0
|
24 | 23 | oveq1i | β’ ((i + -i) Β· π΄) = (0 Β· π΄)
|
25 | d1, d4, 7 | adddird | β’ (π΄ β β β ((i + -i) Β· π΄) = ((i Β· π΄) + (-i Β· π΄)))
|
26 | 24, 25 | syl5reqr | β’ (π΄ β β β ((i Β· π΄) + (-i Β· π΄)) = (0 Β· π΄))
|
27 | 7 | mul02d | β’ (π΄ β β β (0 Β· π΄) = 0)
|
28 | 26, 27 | eqtrd | β’ (π΄ β β β ((i Β· π΄) + (-i Β· π΄)) = 0)
|
29 | 28 | fveq2d | β’ (π΄ β β β (expβ((i Β· π΄) + (-i Β· π΄))) = (expβ0))
|
30 | | ef0 | β’ (expβ0) = 1
|
d16 | 22 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (expβ((i Β· π΄) + (-i Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(-i Β· π΄))))
|
31 | 21, d16 | eqtr4d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))) = (expβ((i Β· π΄) + (-i Β· π΄))))
|
d18 | 30 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (expβ0) = 1)
|
d19 | 29 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (expβ((i Β· π΄) + (-i Β· π΄))) = (expβ0))
|
32 | 31, d19, d18 | 3eqtrd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))) = 1)
|
d21 | | efadd | β’ (((i Β· π΄) β β β§ (i Β· π΄) β β) β (expβ((i Β· π΄) + (i Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))))
|
33 | 8, 8, d21 | syl2anc | β’ (π΄ β β β (expβ((i Β· π΄) + (i Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))))
|
34 | 8 | 2timesd | β’ (π΄ β β β (2 Β· (i Β· π΄)) = ((i Β· π΄) + (i Β· π΄)))
|
d22 | 5 | a1i | β’ (π΄ β β β 2 β β)
|
35 | d22, d1, 7 | mul12d | β’ (π΄ β β β (2 Β· (i Β· π΄)) = (i Β· (2 Β· π΄)))
|
36 | 35, 34 | eqtr3d | β’ (π΄ β β β (i Β· (2 Β· π΄)) = ((i Β· π΄) + (i Β· π΄)))
|
37 | 36 | fveq2d | β’ (π΄ β β β (expβ(i Β· (2 Β· π΄))) = (expβ((i Β· π΄) + (i Β· π΄))))
|
38 | 37, 33 | eqtrd | β’ (π΄ β β β (expβ(i Β· (2 Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))))
|
d24 | 38 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (expβ(i Β· (2 Β· π΄))) = ((expβ(i Β· π΄)) Β· (expβ(i Β· π΄))))
|
39 | d24, 32 | eqtrd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (expβ(i Β· (2 Β· π΄))) = 1)
|
40 | 39 | fveq2d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(expβ(i Β· (2 Β· π΄)))) = (absβ1))
|
41 | | abs1 | β’ (absβ1) = 1
|
42 | 40, 41 | syl6eq | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(expβ(i Β· (2 Β· π΄)))) = 1)
|
43 | d22, 7 | mulcld | β’ (π΄ β β β (2 Β· π΄) β β)
|
d138 | | absefib | β’ ((2 Β· π΄) β β β ((2 Β· π΄) β β β (absβ(expβ(i Β· (2 Β· π΄)))) = 1))
|
d63 | d138 | biimparc | β’ (((absβ(expβ(i Β· (2 Β· π΄)))) = 1 β§ (2 Β· π΄) β β) β (2 Β· π΄) β β)
|
d27 | d63 | ancoms | β’ (((2 Β· π΄) β β β§ (absβ(expβ(i Β· (2 Β· π΄)))) = 1) β (2 Β· π΄) β β)
|
44 | 43, 42, d27 | eel121 | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (2 Β· π΄) β β)
|
d139 | | 2re | β’ 2 β β
|
d65 | d139 | a1i | β’ (2 β β β 2 β β)
|
45 | 5, d65 | ax-mp | β’ 2 β β
|
d28 | 15 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β 2 β 0)
|
d29 | 45 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β 2 β β)
|
d30 | 7 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β π΄ β β)
|
d140 | | mulre | β’ ((π΄ β β β§ 2 β β β§ 2 β 0) β (π΄ β β β (2 Β· π΄) β β))
|
d84 | d140 | 4animp1 | β’ ((((π΄ β β β§ 2 β β) β§ 2 β 0) β§ (2 Β· π΄) β β) β π΄ β β)
|
d32 | d84 | 4an31 | β’ ((((2 β 0 β§ 2 β β) β§ π΄ β β) β§ (2 Β· π΄) β β) β π΄ β β)
|
lemma1 | d28, d29, d30, 44, d32 | eel1111 | β’ ((π΄ β β β§ (sinβπ΄) = 0) β π΄ β β)
|
β’
|
Proof of lemma2 |
β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π)))) = (absβ(sinβ(π΄ β (π Β· (ββ(π΄ / π))))))) |
Step | Hyp | Ref | Expression |
47 | | pire | β’ π β β
|
48 | | pipos | β’ 0 < π
|
49 | | 0re | β’ 0 β β
|
50 | 49, 47, 48 | ltleii | β’ 0 β€ π
|
d141 | | gt0ne0 | β’ ((π β β β§ 0 < π) β π β 0)
|
d93 | d141 | 3adant3 | β’ ((π β β β§ 0 < π β§ 0 β€ π) β π β 0)
|
d33 | d93 | 3com23 | β’ ((π β β β§ 0 β€ π β§ 0 < π) β π β 0)
|
51 | 47, 50, 48, d33 | mp3an | β’ π β 0
|
d34 | 47 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β π β β)
|
d35 | 51 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β π β 0)
|
52 | lemma1, d34, d35 | redivcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ / π) β β)
|
53 | 52 | flcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (ββ(π΄ / π)) β β€)
|
54 | 53 | zcnd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (ββ(π΄ / π)) β β)
|
55 | 47 | recni | β’ π β β
|
d37 | 55 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β π β β)
|
56 | 54, d37 | mulneg1d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (-(ββ(π΄ / π)) Β· π) = -((ββ(π΄ / π)) Β· π))
|
57 | 54, d37 | mulcomd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((ββ(π΄ / π)) Β· π) = (π Β· (ββ(π΄ / π))))
|
58 | 57 | negeqd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β -((ββ(π΄ / π)) Β· π) = -(π Β· (ββ(π΄ / π))))
|
59 | 56, 58 | eqtrd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (-(ββ(π΄ / π)) Β· π) = -(π Β· (ββ(π΄ / π))))
|
60 | d37, 54 | mulcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π Β· (ββ(π΄ / π))) β β)
|
61 | d30, 60 | negsubd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ + -(π Β· (ββ(π΄ / π)))) = (π΄ β (π Β· (ββ(π΄ / π)))))
|
62 | 60 | negcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β -(π Β· (ββ(π΄ / π))) β β)
|
63 | 54 | negcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β -(ββ(π΄ / π)) β β)
|
64 | 63, d37 | mulcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (-(ββ(π΄ / π)) Β· π) β β)
|
d142 | | oveq2 | β’ ((-(ββ(π΄ / π)) Β· π) = -(π Β· (ββ(π΄ / π))) β (π΄ + (-(ββ(π΄ / π)) Β· π)) = (π΄ + -(π Β· (ββ(π΄ / π)))))
|
d96 | d142 | ad3antrrr | β’ (((((-(ββ(π΄ / π)) Β· π) = -(π Β· (ββ(π΄ / π))) β§ -(π Β· (ββ(π΄ / π))) β β) β§ (-(ββ(π΄ / π)) Β· π) β β) β§ π΄ β β) β (π΄ + (-(ββ(π΄ / π)) Β· π)) = (π΄ + -(π Β· (ββ(π΄ / π)))))
|
d46 | d96 | 4an4132 | β’ ((((π΄ β β β§ (-(ββ(π΄ / π)) Β· π) β β) β§ -(π Β· (ββ(π΄ / π))) β β) β§ (-(ββ(π΄ / π)) Β· π) = -(π Β· (ββ(π΄ / π)))) β (π΄ + (-(ββ(π΄ / π)) Β· π)) = (π΄ + -(π Β· (ββ(π΄ / π)))))
|
65 | d30, 64, 62, 59, d46 | eel1111 | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ + (-(ββ(π΄ / π)) Β· π)) = (π΄ + -(π Β· (ββ(π΄ / π)))))
|
66 | 65, 61 | eqtrd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ + (-(ββ(π΄ / π)) Β· π)) = (π΄ β (π Β· (ββ(π΄ / π)))))
|
67 | 66 | fveq2d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (sinβ(π΄ + (-(ββ(π΄ / π)) Β· π))) = (sinβ(π΄ β (π Β· (ββ(π΄ / π))))))
|
lemma2 | 67 | fveq2d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π)))) = (absβ(sinβ(π΄ β (π Β· (ββ(π΄ / π)))))))
|
β’
|
Proof of lemma3 |
β’ ((π΄ β β β§ (sinβπ΄) = 0) β (sinβ(π΄ mod π)) = 0) |
Step | Hyp | Ref | Expression |
69 | | modval | β’ ((π΄ β β β§ π β β+) β (π΄ mod π) = (π΄ β (π Β· (ββ(π΄ / π)))))
|
70 | 69 | fveq2d | β’ ((π΄ β β β§ π β β+) β (sinβ(π΄ mod π)) = (sinβ(π΄ β (π Β· (ββ(π΄ / π))))))
|
71 | 70 | fveq2d | β’ ((π΄ β β β§ π β β+) β (absβ(sinβ(π΄ mod π))) = (absβ(sinβ(π΄ β (π Β· (ββ(π΄ / π)))))))
|
d143 | | abssinper | β’ ((π΄ β β β§ -(ββ(π΄ / π)) β β€) β (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π)))) = (absβ(sinβπ΄)))
|
72 | d143 | eqcomd | β’ ((π΄ β β β§ -(ββ(π΄ / π)) β β€) β (absβ(sinβπ΄)) = (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π)))))
|
73 | 72 | ex | β’ (π΄ β β β (-(ββ(π΄ / π)) β β€ β (absβ(sinβπ΄)) = (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π))))))
|
74 | 53 | znegcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β -(ββ(π΄ / π)) β β€)
|
d47 | 73 | adantr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (-(ββ(π΄ / π)) β β€ β (absβ(sinβπ΄)) = (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π))))))
|
75 | 74, d47 | mpd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβπ΄)) = (absβ(sinβ(π΄ + (-(ββ(π΄ / π)) Β· π)))))
|
76 | 47, 48 | elrpii | β’ π β β+
|
77 | 76, 71 | mpan2 | β’ (π΄ β β β (absβ(sinβ(π΄ mod π))) = (absβ(sinβ(π΄ β (π Β· (ββ(π΄ / π)))))))
|
78 | lemma1, 77 | syl | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβ(π΄ mod π))) = (absβ(sinβ(π΄ β (π Β· (ββ(π΄ / π)))))))
|
79 | 75, lemma2 | eqtrd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβπ΄)) = (absβ(sinβ(π΄ β (π Β· (ββ(π΄ / π)))))))
|
80 | 79, 78 | eqtr4d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβπ΄)) = (absβ(sinβ(π΄ mod π))))
|
81 | 2 | fveq2d | β’ ((sinβπ΄) = 0 β (absβ(sinβπ΄)) = (absβ0))
|
82 | | abs0 | β’ (absβ0) = 0
|
83 | 81, 82 | syl6eq | β’ ((sinβπ΄) = 0 β (absβ(sinβπ΄)) = 0)
|
d49 | 83 | adantl | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβπ΄)) = 0)
|
84 | 80, d49 | eqtr3d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (absβ(sinβ(π΄ mod π))) = 0)
|
d51 | 76 | a1i | β’ ((π΄ β β β§ (sinβπ΄) = 0) β π β β+)
|
85 | lemma1, d51 | modcld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ mod π) β β)
|
86 | 85 | recnd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ mod π) β β)
|
87 | 86 | sincld | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (sinβ(π΄ mod π)) β β)
|
lemma3 | 87, 84 | abs00d | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (sinβ(π΄ mod π)) = 0)
|
β’
|
Proof of lemma4 |
β’ ((π΄ β β β§ (sinβπ΄) = 0) β Β¬ 0 < (π΄ mod π)) |
Step | Hyp | Ref | Expression |
89 | | ltne | β’ ((0 β β β§ 0 < (sinβ(π΄ mod π))) β (sinβ(π΄ mod π)) β 0)
|
90 | 89 | neneqd | β’ ((0 β β β§ 0 < (sinβ(π΄ mod π))) β Β¬ (sinβ(π΄ mod π)) = 0)
|
91 | 90 | expcom | β’ (0 < (sinβ(π΄ mod π)) β (0 β β β Β¬ (sinβ(π΄ mod π)) = 0))
|
92 | 49, 91 | mpi | β’ (0 < (sinβ(π΄ mod π)) β Β¬ (sinβ(π΄ mod π)) = 0)
|
93 | 92 | con3i | β’ (Β¬ Β¬ (sinβ(π΄ mod π)) = 0 β Β¬ 0 < (sinβ(π΄ mod π)))
|
d144 | | notnot | β’ ((sinβ(π΄ mod π)) = 0 β Β¬ Β¬ (sinβ(π΄ mod π)) = 0)
|
94 | d144 | bicomi | β’ (Β¬ Β¬ (sinβ(π΄ mod π)) = 0 β (sinβ(π΄ mod π)) = 0)
|
95 | 94, 93 | sylbir | β’ ((sinβ(π΄ mod π)) = 0 β Β¬ 0 < (sinβ(π΄ mod π)))
|
96 | lemma3, 95 | syl | β’ ((π΄ β β β§ (sinβπ΄) = 0) β Β¬ 0 < (sinβ(π΄ mod π)))
|
97 | | sinq12gt0 | β’ ((π΄ mod π) β (0(,)π) β 0 < (sinβ(π΄ mod π)))
|
98 | 96, 97 | nsyl | β’ ((π΄ β β β§ (sinβπ΄) = 0) β Β¬ (π΄ mod π) β (0(,)π))
|
99 | 49 | rexri | β’ 0 β β*
|
100 | 47 | rexri | β’ π β β*
|
d53 | | elioo2 | β’ ((0 β β* β§ π β β*) β ((π΄ mod π) β (0(,)π) β ((π΄ mod π) β β β§ 0 < (π΄ mod π) β§ (π΄ mod π) < π)))
|
101 | 99, 100, d53 | mp2an | β’ ((π΄ mod π) β (0(,)π) β ((π΄ mod π) β β β§ 0 < (π΄ mod π) β§ (π΄ mod π) < π))
|
102 | 101 | notbii | β’ (Β¬ (π΄ mod π) β (0(,)π) β Β¬ ((π΄ mod π) β β β§ 0 < (π΄ mod π) β§ (π΄ mod π) < π))
|
103 | 98, 102 | sylib | β’ ((π΄ β β β§ (sinβπ΄) = 0) β Β¬ ((π΄ mod π) β β β§ 0 < (π΄ mod π) β§ (π΄ mod π) < π))
|
104 | | 3anan12 | β’ (((π΄ mod π) β β β§ 0 < (π΄ mod π) β§ (π΄ mod π) < π) β (0 < (π΄ mod π) β§ ((π΄ mod π) β β β§ (π΄ mod π) < π)))
|
105 | 104 | notbii | β’ (Β¬ ((π΄ mod π) β β β§ 0 < (π΄ mod π) β§ (π΄ mod π) < π) β Β¬ (0 < (π΄ mod π) β§ ((π΄ mod π) β β β§ (π΄ mod π) < π)))
|
106 | 103, 105 | sylib | β’ ((π΄ β β β§ (sinβπ΄) = 0) β Β¬ (0 < (π΄ mod π) β§ ((π΄ mod π) β β β§ (π΄ mod π) < π)))
|
d120 | | modlt | β’ ((π΄ β β β§ π β β+) β (π΄ mod π) < π)
|
d54 | d120 | ancoms | β’ ((π β β+ β§ π΄ β β) β (π΄ mod π) < π)
|
107 | 76, lemma1, d54 | sylancr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ mod π) < π)
|
108 | 85, 107 | jca | β’ ((π΄ β β β§ (sinβπ΄) = 0) β ((π΄ mod π) β β β§ (π΄ mod π) < π))
|
d55 | | not12an2impnot1 | β’ ((Β¬ (0 < (π΄ mod π) β§ ((π΄ mod π) β β β§ (π΄ mod π) < π)) β§ ((π΄ mod π) β β β§ (π΄ mod π) < π)) β Β¬ 0 < (π΄ mod π))
|
lemma4 | 106, 108, d55 | syl2anc | β’ ((π΄ β β β§ (sinβπ΄) = 0) β Β¬ 0 < (π΄ mod π))
|
β’
|
Proof of sineq0ALTRO |
β’ (π΄ β β β ((sinβπ΄) = 0 β (π΄ / π) β β€)) |
Step | Hyp | Ref | Expression |
d122 | | modge0 | β’ ((π΄ β β β§ π β β+) β 0 β€ (π΄ mod π))
|
d56 | d122 | ancoms | β’ ((π β β+ β§ π΄ β β) β 0 β€ (π΄ mod π))
|
110 | 76, lemma1, d56 | sylancr | β’ ((π΄ β β β§ (sinβπ΄) = 0) β 0 β€ (π΄ mod π))
|
d145 | | leloe | β’ ((0 β β β§ (π΄ mod π) β β) β (0 β€ (π΄ mod π) β (0 < (π΄ mod π) β¨ 0 = (π΄ mod π))))
|
d129 | d145 | biimp3a | β’ ((0 β β β§ (π΄ mod π) β β β§ 0 β€ (π΄ mod π)) β (0 < (π΄ mod π) β¨ 0 = (π΄ mod π)))
|
d57 | d129 | idi | β’ ((0 β β β§ (π΄ mod π) β β β§ 0 β€ (π΄ mod π)) β (0 < (π΄ mod π) β¨ 0 = (π΄ mod π)))
|
111 | 49, 85, 110, d57 | eel011 | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (0 < (π΄ mod π) β¨ 0 = (π΄ mod π)))
|
d146 | | pm2.53 | β’ ((0 < (π΄ mod π) β¨ 0 = (π΄ mod π)) β (Β¬ 0 < (π΄ mod π) β 0 = (π΄ mod π)))
|
d130 | d146 | imp | β’ (((0 < (π΄ mod π) β¨ 0 = (π΄ mod π)) β§ Β¬ 0 < (π΄ mod π)) β 0 = (π΄ mod π))
|
d58 | d130 | ancoms | β’ ((Β¬ 0 < (π΄ mod π) β§ (0 < (π΄ mod π) β¨ 0 = (π΄ mod π))) β 0 = (π΄ mod π))
|
112 | lemma4, 111, d58 | syl2anc | β’ ((π΄ β β β§ (sinβπ΄) = 0) β 0 = (π΄ mod π))
|
113 | 112 | eqcomd | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ mod π) = 0)
|
d147 | | mod0 | β’ ((π΄ β β β§ π β β+) β ((π΄ mod π) = 0 β (π΄ / π) β β€))
|
d136 | d147 | biimp3a | β’ ((π΄ β β β§ π β β+ β§ (π΄ mod π) = 0) β (π΄ / π) β β€)
|
d59 | d136 | 3com12 | β’ ((π β β+ β§ π΄ β β β§ (π΄ mod π) = 0) β (π΄ / π) β β€)
|
114 | 76, lemma1, 113, d59 | eel011 | β’ ((π΄ β β β§ (sinβπ΄) = 0) β (π΄ / π) β β€)
|
115 | 114 | ex | β’ (π΄ β β β ((sinβπ΄) = 0 β (π΄ / π) β β€))
|
116 | | id | β’ ((π΄ / π) β β€ β (π΄ / π) β β€)
|
d60 | | sinkpi | β’ ((π΄ / π) β β€ β (sinβ((π΄ / π) Β· π)) = 0)
|
117 | 116, d60 | syl | β’ ((π΄ / π) β β€ β (sinβ((π΄ / π) Β· π)) = 0)
|
d61 | 55 | a1i | β’ (π΄ β β β π β β)
|
d62 | 51 | a1i | β’ (π΄ β β β π β 0)
|
118 | 7, d61, d62 | divcan1d | β’ (π΄ β β β ((π΄ / π) Β· π) = π΄)
|
119 | 118 | fveq2d | β’ (π΄ β β β (sinβ((π΄ / π) Β· π)) = (sinβπ΄))
|
120 | 119, 117 | sylan9req | β’ ((π΄ β β β§ (π΄ / π) β β€) β (sinβπ΄) = 0)
|
121 | 120 | ex | β’ (π΄ β β β ((π΄ / π) β β€ β (sinβπ΄) = 0))
|
qed | 115, 121 | impbid | β’ (π΄ β β β ((sinβπ΄) = 0 β (π΄ / π) β β€))
|