Proof of Theorem sineq0ALTVD
| | ⊢ |
⊢
|
Proof of lemma1 |
⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ 𝐴 ∈ ℝ ) |
Step | Hyp | Expression |
1 | | ⊢ ( 𝐴 ∈ ℂ ▶ (sin‘𝐴) = (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) )
|
2 | | ⊢ ( (sin‘𝐴) = 0 ▶ (sin‘𝐴) = 0 )
|
3 | 1, 2 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 )
|
4 | | ⊢ i ∈ ℂ
|
5 | | ⊢ 2 ∈ ℂ
|
6 | 4, 5 | ⊢ (2 · i) ∈ ℂ
|
7 | | ⊢ ( 𝐴 ∈ ℂ ▶ 𝐴 ∈ ℂ )
|
8 | 4, 7 | ⊢ ( 𝐴 ∈ ℂ ▶ (i · 𝐴) ∈ ℂ )
|
9 | 8 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘(i · 𝐴)) ∈ ℂ )
|
10 | 4 | ⊢ -i ∈ ℂ
|
11 | 10, 7 | ⊢ ( 𝐴 ∈ ℂ ▶ (-i · 𝐴) ∈ ℂ )
|
12 | 11 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘(-i · 𝐴)) ∈ ℂ )
|
13 | 9, 12 | ⊢ ( 𝐴 ∈ ℂ ▶ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) ∈ ℂ )
|
14 | | ⊢ i ≠ 0
|
15 | | ⊢ 2 ≠ 0
|
16 | 5, 4, 14, 15 | ⊢ (2 · i) ≠ 0
|
17 | 13, 6, 16 | ⊢ ( 𝐴 ∈ ℂ ▶ ((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0) )
|
18 | 3, 17 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 )
|
19 | 9, 12 | ⊢ ( 𝐴 ∈ ℂ ▶ (((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴))) )
|
20 | 19, 18 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (exp‘(i · 𝐴)) = (exp‘(-i · 𝐴)) )
|
21 | 20 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) )
|
22 | 8, 11 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i · 𝐴))) )
|
23 | 4 | ⊢ (i + -i) = 0
|
24 | 23 | ⊢ ((i + -i) · 𝐴) = (0 · 𝐴)
|
25 | 7, 4, 10 | ⊢ ( 𝐴 ∈ ℂ ▶ ((i + -i) · 𝐴) = ((i · 𝐴) + (-i · 𝐴)) )
|
26 | 24, 25 | ⊢ ( 𝐴 ∈ ℂ ▶ ((i · 𝐴) + (-i · 𝐴)) = (0 · 𝐴) )
|
27 | 7 | ⊢ ( 𝐴 ∈ ℂ ▶ (0 · 𝐴) = 0 )
|
28 | 26, 27 | ⊢ ( 𝐴 ∈ ℂ ▶ ((i · 𝐴) + (-i · 𝐴)) = 0 )
|
29 | 28 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘((i · 𝐴) + (-i · 𝐴))) = (exp‘0) )
|
30 | | ⊢ (exp‘0) = 1
|
31 | 22, 21 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴))) )
|
32 | 29, 30, 31 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) = 1 )
|
33 | 8, 8 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) )
|
34 | 8 | ⊢ ( 𝐴 ∈ ℂ ▶ (2 · (i · 𝐴)) = ((i · 𝐴) + (i · 𝐴)) )
|
35 | 5, 4, 7 | ⊢ ( 𝐴 ∈ ℂ ▶ (2 · (i · 𝐴)) = (i · (2 · 𝐴)) )
|
36 | 34, 35 | ⊢ ( 𝐴 ∈ ℂ ▶ (i · (2 · 𝐴)) = ((i · 𝐴) + (i · 𝐴)) )
|
37 | 36 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴))) )
|
38 | 33, 37 | ⊢ ( 𝐴 ∈ ℂ ▶ (exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i · 𝐴))) )
|
39 | 32, 38 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (exp‘(i · (2 · 𝐴))) = 1 )
|
40 | 39 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1) )
|
41 | | ⊢ (abs‘1) = 1
|
42 | 40, 41 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(exp‘(i · (2 · 𝐴)))) = 1 )
|
43 | 7, 5 | ⊢ ( 𝐴 ∈ ℂ ▶ (2 · 𝐴) ∈ ℂ )
|
44 | 43, 42 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (2 · 𝐴) ∈ ℝ )
|
45 | 5 | ⊢ 2 ∈ ℝ
|
lemma1 | 15, 45, 7, 44 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ 𝐴 ∈ ℝ )
|
⊢
|
Proof of lemma2 |
⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))) ) |
Step | Hyp | Expression |
47 | | ⊢ 𝜋 ∈ ℝ
|
48 | | ⊢ 0 < 𝜋
|
49 | | ⊢ 0 ∈ ℝ
|
50 | 49, 47, 48 | ⊢ 0 ≤ 𝜋
|
51 | 47, 50, 48 | ⊢ 𝜋 ≠ 0
|
52 | 47, lemma1, 51 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 / 𝜋) ∈ ℝ )
|
53 | 52 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (⌊‘(𝐴 / 𝜋)) ∈ ℤ )
|
54 | 53 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (⌊‘(𝐴 / 𝜋)) ∈ ℂ )
|
55 | 47 | ⊢ 𝜋 ∈ ℂ
|
56 | 54, 55 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -((⌊‘(𝐴 / 𝜋)) · 𝜋) )
|
57 | 54, 55 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ((⌊‘(𝐴 / 𝜋)) · 𝜋) = (𝜋 · (⌊‘(𝐴 / 𝜋))) )
|
58 | 57 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ -((⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋))) )
|
59 | 56, 58 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (-(⌊‘(𝐴 / 𝜋)) · 𝜋) = -(𝜋 · (⌊‘(𝐴 / 𝜋))) )
|
60 | 55, 54 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝜋 · (⌊‘(𝐴 / 𝜋))) ∈ ℂ )
|
61 | 7, 60 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))) = (𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))) )
|
62 | 60 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ -(𝜋 · (⌊‘(𝐴 / 𝜋))) ∈ ℂ )
|
63 | 54 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ -(⌊‘(𝐴 / 𝜋)) ∈ ℂ )
|
64 | 63, 55 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (-(⌊‘(𝐴 / 𝜋)) · 𝜋) ∈ ℂ )
|
65 | 59, 7, 62, 64 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 + -(𝜋 · (⌊‘(𝐴 / 𝜋)))) )
|
66 | 65, 61 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)) = (𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))) )
|
67 | 66 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋))) = (sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋))))) )
|
lemma2 | 67 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))) )
|
⊢
|
Proof of lemma3 |
⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (sin‘(𝐴 mod 𝜋)) = 0 ) |
Step | Hyp | Expression |
69 | | ⊢ ( ( 𝐴 ∈ ℝ , 𝜋 ∈ ℝ+ ) ▶ (𝐴 mod 𝜋) = (𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))) )
|
70 | 69 | ⊢ ( ( 𝐴 ∈ ℝ , 𝜋 ∈ ℝ+ ) ▶ (sin‘(𝐴 mod 𝜋)) = (sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋))))) )
|
71 | 70 | ⊢ ( ( 𝐴 ∈ ℝ , 𝜋 ∈ ℝ+ ) ▶ (abs‘(sin‘(𝐴 mod 𝜋))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))) )
|
72 | | ⊢ ( ( 𝐴 ∈ ℂ , -(⌊‘(𝐴 / 𝜋)) ∈ ℤ ) ▶ (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) )
|
73 | 72 | ⊢ ( 𝐴 ∈ ℂ ▶ (-(⌊‘(𝐴 / 𝜋)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋))))) )
|
74 | 53 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ -(⌊‘(𝐴 / 𝜋)) ∈ ℤ )
|
75 | 73, 74 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / 𝜋)) · 𝜋)))) )
|
76 | 47, 48 | ⊢ 𝜋 ∈ ℝ+
|
77 | 71, 76 | ⊢ ( 𝐴 ∈ ℝ ▶ (abs‘(sin‘(𝐴 mod 𝜋))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))) )
|
78 | lemma1, 77 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘(𝐴 mod 𝜋))) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))) )
|
79 | 75, lemma2 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 − (𝜋 · (⌊‘(𝐴 / 𝜋)))))) )
|
80 | 79, 78 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 mod 𝜋))) )
|
81 | 2 | ⊢ ( (sin‘𝐴) = 0 ▶ (abs‘(sin‘𝐴)) = (abs‘0) )
|
82 | | ⊢ (abs‘0) = 0
|
83 | 81, 82 | ⊢ ( (sin‘𝐴) = 0 ▶ (abs‘(sin‘𝐴)) = 0 )
|
84 | 80, 83 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (abs‘(sin‘(𝐴 mod 𝜋))) = 0 )
|
85 | lemma1, 76 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 mod 𝜋) ∈ ℝ )
|
86 | 85 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 mod 𝜋) ∈ ℂ )
|
87 | 86 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (sin‘(𝐴 mod 𝜋)) ∈ ℂ )
|
lemma3 | 87, 84 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (sin‘(𝐴 mod 𝜋)) = 0 )
|
⊢
|
Proof of lemma4 |
⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ¬ 0 < (𝐴 mod 𝜋) ) |
Step | Hyp | Expression |
89 | | ⊢ ( ( 0 ∈ ℝ , 0 < (sin‘(𝐴 mod 𝜋)) ) ▶ (sin‘(𝐴 mod 𝜋)) ≠ 0 )
|
90 | 89 | ⊢ ( ( 0 ∈ ℝ , 0 < (sin‘(𝐴 mod 𝜋)) ) ▶ ¬ (sin‘(𝐴 mod 𝜋)) = 0 )
|
91 | 90 | ⊢ ( 0 < (sin‘(𝐴 mod 𝜋)) ▶ (0 ∈ ℝ → ¬ (sin‘(𝐴 mod 𝜋)) = 0) )
|
92 | 91, 49 | ⊢ ( 0 < (sin‘(𝐴 mod 𝜋)) ▶ ¬ (sin‘(𝐴 mod 𝜋)) = 0 )
|
93 | 92 | ⊢ (¬ ¬ (sin‘(𝐴 mod 𝜋)) = 0 → ¬ 0 < (sin‘(𝐴 mod 𝜋)))
|
94 | | ⊢ (¬ ¬ (sin‘(𝐴 mod 𝜋)) = 0 ↔ (sin‘(𝐴 mod 𝜋)) = 0)
|
95 | 93, 94 | ⊢ ((sin‘(𝐴 mod 𝜋)) = 0 → ¬ 0 < (sin‘(𝐴 mod 𝜋)))
|
96 | lemma3, 95 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ¬ 0 < (sin‘(𝐴 mod 𝜋)) )
|
97 | | ⊢ ((𝐴 mod 𝜋) ∈ (0(,)𝜋) → 0 < (sin‘(𝐴 mod 𝜋)))
|
98 | 96, 97 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ¬ (𝐴 mod 𝜋) ∈ (0(,)𝜋) )
|
99 | 49 | ⊢ 0 ∈ ℝ*
|
100 | 47 | ⊢ 𝜋 ∈ ℝ*
|
101 | 99, 100 | ⊢ ((𝐴 mod 𝜋) ∈ (0(,)𝜋) ↔ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋))
|
102 | 101 | ⊢ (¬ (𝐴 mod 𝜋) ∈ (0(,)𝜋) ↔ ¬ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋))
|
103 | 98, 102 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ¬ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋) )
|
104 | | ⊢ (((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋) ↔ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)))
|
105 | 104 | ⊢ (¬ ((𝐴 mod 𝜋) ∈ ℝ ∧ 0 < (𝐴 mod 𝜋) ∧ (𝐴 mod 𝜋) < 𝜋) ↔ ¬ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)))
|
106 | 103, 105 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ¬ (0 < (𝐴 mod 𝜋) ∧ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋)) )
|
107 | 76, lemma1 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 mod 𝜋) < 𝜋 )
|
108 | 85, 107 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ((𝐴 mod 𝜋) ∈ ℝ ∧ (𝐴 mod 𝜋) < 𝜋) )
|
lemma4 | 106, 108 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ ¬ 0 < (𝐴 mod 𝜋) )
|
⊢
|
Proof of sineq0ALTVD |
⊢ ( 𝐴 ∈ ℂ ▶ ((sin‘𝐴) = 0 ↔ (𝐴 / 𝜋) ∈ ℤ) ) |
Step | Hyp | Expression |
110 | lemma1, 76 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ 0 ≤ (𝐴 mod 𝜋) )
|
111 | 49, 85, 110 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (0 < (𝐴 mod 𝜋) ∨ 0 = (𝐴 mod 𝜋)) )
|
112 | lemma4, 111 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ 0 = (𝐴 mod 𝜋) )
|
113 | 112 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 mod 𝜋) = 0 )
|
114 | lemma1, 76, 113 | ⊢ ( ( 𝐴 ∈ ℂ , (sin‘𝐴) = 0 ) ▶ (𝐴 / 𝜋) ∈ ℤ )
|
115 | 114 | ⊢ ( 𝐴 ∈ ℂ ▶ ((sin‘𝐴) = 0 → (𝐴 / 𝜋) ∈ ℤ) )
|
116 | | ⊢ ( (𝐴 / 𝜋) ∈ ℤ ▶ (𝐴 / 𝜋) ∈ ℤ )
|
117 | 116 | ⊢ ( (𝐴 / 𝜋) ∈ ℤ ▶ (sin‘((𝐴 / 𝜋) · 𝜋)) = 0 )
|
118 | 7, 55, 51 | ⊢ ( 𝐴 ∈ ℂ ▶ ((𝐴 / 𝜋) · 𝜋) = 𝐴 )
|
119 | 118 | ⊢ ( 𝐴 ∈ ℂ ▶ (sin‘((𝐴 / 𝜋) · 𝜋)) = (sin‘𝐴) )
|
120 | 117, 119 | ⊢ ( ( 𝐴 ∈ ℂ , (𝐴 / 𝜋) ∈ ℤ ) ▶ (sin‘𝐴) = 0 )
|
121 | 120 | ⊢ ( 𝐴 ∈ ℂ ▶ ((𝐴 / 𝜋) ∈ ℤ → (sin‘𝐴) = 0) )
|
qed | 115, 121 | ⊢ ( 𝐴 ∈ ℂ ▶ ((sin‘𝐴) = 0 ↔ (𝐴 / 𝜋) ∈ ℤ) )
|