Detailed syntax breakdown of Axiom ax-4oa
Step | Hyp | Ref
| Expression |
1 | | wva |
. . . 4
term a |
2 | | wvd |
. . . 4
term d |
3 | 1, 2 | wi1 12 |
. . 3
term (a →1 d) |
4 | | wvb |
. . . . . 6
term b |
5 | 1, 4 | wa 7 |
. . . . 5
term (a ∩ b) |
6 | 4, 2 | wi1 12 |
. . . . . 6
term (b →1 d) |
7 | 3, 6 | wa 7 |
. . . . 5
term ((a →1 d) ∩ (b
→1 d)) |
8 | 5, 7 | wo 6 |
. . . 4
term ((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d))) |
9 | | wvc |
. . . . . . 7
term c |
10 | 1, 9 | wa 7 |
. . . . . 6
term (a ∩ c) |
11 | 9, 2 | wi1 12 |
. . . . . . 7
term (c →1 d) |
12 | 3, 11 | wa 7 |
. . . . . 6
term ((a →1 d) ∩ (c
→1 d)) |
13 | 10, 12 | wo 6 |
. . . . 5
term ((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) |
14 | 4, 9 | wa 7 |
. . . . . 6
term (b ∩ c) |
15 | 6, 11 | wa 7 |
. . . . . 6
term ((b →1 d) ∩ (c
→1 d)) |
16 | 14, 15 | wo 6 |
. . . . 5
term ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d))) |
17 | 13, 16 | wa 7 |
. . . 4
term (((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d)))) |
18 | 8, 17 | wo 6 |
. . 3
term (((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d))))) |
19 | 3, 18 | wa 7 |
. 2
term ((a →1 d) ∩ (((a
∩ b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d)))))) |
20 | 19, 6 | wle 2 |
1
wff ((a →1 d) ∩ (((a
∩ b) ∪ ((a →1 d) ∩ (b
→1 d))) ∪ (((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d)))))) ≤ (b →1 d) |