Proof of Theorem oa63v
Step | Hyp | Ref
| Expression |
1 | | ud2lem0c 278 |
. . . . 5
(a →2 c)⊥ = (c⊥ ∩ (a ∪ c)) |
2 | | lea 160 |
. . . . 5
(c⊥ ∩ (a ∪ c)) ≤
c⊥ |
3 | 1, 2 | bltr 138 |
. . . 4
(a →2 c)⊥ ≤ c⊥ |
4 | | ud2lem0c 278 |
. . . . 5
(a →2 b)⊥ = (b⊥ ∩ (a ∪ b)) |
5 | | lea 160 |
. . . . 5
(b⊥ ∩ (a ∪ b)) ≤
b⊥ |
6 | 4, 5 | bltr 138 |
. . . 4
(a →2 b)⊥ ≤ b⊥ |
7 | 3, 6 | oa64v 1031 |
. . . 4
(((a →2 c)⊥ ∪ c) ∩ ((a
→2 b)⊥
∪ b)) ≤ (c ∪ ((a
→2 c)⊥
∩ ((a →2 b)⊥ ∪ (((a →2 c)⊥ ∪ (a →2 b)⊥ ) ∩ (c ∪ b))))) |
8 | | id 59 |
. . . 4
(a →2 c)⊥ = (a →2 c)⊥ |
9 | | id 59 |
. . . 4
(a →2 b)⊥ = (a →2 b)⊥ |
10 | 3, 6, 7, 8, 9 | oa4v3v 934 |
. . 3
(c⊥ ∩
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ≤ ((c⊥ ∩ (a →2 c)) ∪ (b⊥ ∩ (a →2 b))) |
11 | 10 | oal42 935 |
. 2
(c⊥ ∩
((a →2 c) ∪ ((a
→2 b) ∩ ((c ∪ b)⊥ ∪ ((a →2 c) ∩ (a
→2 b)))))) ≤ a⊥ |
12 | 11 | oa23 936 |
1
((a →2 b) ∩ ((b
∪ c)⊥ ∪ ((a →2 b) ∩ (a
→2 c)))) ≤ (a →2 c) |