Home | Quantum
Logic Explorer Theorem List (p. 11 of 13) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > QLE Home Page > Theorem List Contents This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | oaliii 1001 | Orthoarguesian law. Godowski/Greechie, Eq. III. (Contributed by NM, 22-Sep-1998.) |
((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) = ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) | ||
Theorem | oalii 1002 | Orthoarguesian law. Godowski/Greechie, Eq. II. This proof references oaliii 1001 only. (Contributed by NM, 22-Sep-1998.) |
(b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ a⊥ | ||
Theorem | oaliv 1003 | Orthoarguesian law. Godowski/Greechie, Eq. IV. (Contributed by NM, 25-Nov-1998.) |
(b⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))))) ≤ ((b⊥ ∩ (a →2 b)) ∪ (c⊥ ∩ (a →2 c))) | ||
Theorem | oath1 1004 | OA theorem. (Contributed by NM, 12-Oct-1998.) |
((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) = ((a →2 b) ∩ (a →2 c)) | ||
Theorem | oalem1 1005 | Lemma. (Contributed by NM, 16-Oct-1998.) |
((b ∪ c) ∪ ((b ∪ c)⊥ ∩ ((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c))))))) ≤ (a →2 (b ∪ c)) | ||
Theorem | oalem2 1006 | Lemma. (Contributed by NM, 16-Oct-1998.) |
((a →2 b) ∪ ((a →2 c) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c))))) = (a →2 b) | ||
Theorem | oadist2a 1007 | Distributive inference derived from OA. (Contributed by NM, 17-Nov-1998.) |
(d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) = (((a →2 b) ∩ d) ∪ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) | ||
Theorem | oadist2b 1008 | Distributive inference derived from OA. (Contributed by NM, 17-Nov-1998.) |
d ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) = (((a →2 b) ∩ d) ∪ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) | ||
Theorem | oadist2 1009 | Distributive inference derived from OA. (Contributed by NM, 17-Nov-1998.) |
(d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c)))) = ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ (d ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) = (((a →2 b) ∩ d) ∪ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) | ||
Theorem | oadist12 1010 | Distributive law derived from OA. (Contributed by NM, 17-Nov-1998.) |
((a →2 b) ∩ (((b ∪ c) →1 ((a →2 b) ∩ (a →2 c))) ∪ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) = (((a →2 b) ∩ ((b ∪ c) →1 ((a →2 b) ∩ (a →2 c)))) ∪ ((a →2 b) ∩ ((b ∪ c) →2 ((a →2 b) ∩ (a →2 c))))) | ||
Theorem | oacom 1011 | Commutation law requiring OA. (Contributed by NM, 19-Nov-1998.) |
d C ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) & (d ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) C (a →2 b) ⇒ d C ((a →2 b) ∩ (a →2 c)) | ||
Theorem | oacom2 1012 | Commutation law requiring OA. (Contributed by NM, 19-Nov-1998.) |
d ≤ ((a →2 b) ∩ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c)))) ⇒ d C ((a →2 b) ∩ (a →2 c)) | ||
Theorem | oacom3 1013 | Commutation law requiring OA. (Contributed by NM, 19-Nov-1998.) |
(d ∩ (a →2 b)) C ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) & d C (a →2 b) ⇒ d C ((a →2 b) ∩ (a →2 c)) | ||
Theorem | oagen1 1014 | "Generalized" OA. (Contributed by NM, 19-Nov-1998.) |
d ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ (d ∪ ((a →2 b) ∩ (a →2 c)))) = ((a →2 b) ∩ (a →2 c)) | ||
Theorem | oagen1b 1015 | "Generalized" OA. (Contributed by NM, 21-Nov-1998.) |
d ≤ (a →2 b) & e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ (d ∩ (e ∪ ((a →2 b) ∩ (a →2 c)))) = (d ∩ (a →2 c)) | ||
Theorem | oagen2 1016 | "Generalized" OA. (Contributed by NM, 19-Nov-1998.) |
d ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ d) ≤ (a →2 c) | ||
Theorem | oagen2b 1017 | "Generalized" OA. (Contributed by NM, 21-Nov-1998.) |
d ≤ (a →2 b) & e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ (d ∩ e) ≤ (a →2 c) | ||
Theorem | mloa 1018 | Mladen's OA. (Contributed by NM, 20-Nov-1998.) |
((a ≡ b) ∩ ((b ≡ c) ∪ ((b ∪ (a ≡ b)) ∩ (c ∪ (a ≡ c))))) ≤ (c ∪ (a ≡ c)) | ||
Theorem | oadist 1019 | Distributive law derived from OAL. (Contributed by NM, 20-Nov-1998.) |
d ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ ((a →2 b) ∩ (d ∪ ((a →2 b) ∩ (a →2 c)))) = (((a →2 b) ∩ d) ∪ ((a →2 b) ∩ ((a →2 b) ∩ (a →2 c)))) | ||
Theorem | oadistb 1020 | Distributive law derived from OAL. (Contributed by NM, 20-Nov-1998.) |
d ≤ (a →2 b) & e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) ⇒ (d ∩ (e ∪ ((a →2 b) ∩ (a →2 c)))) = ((d ∩ e) ∪ (d ∩ ((a →2 b) ∩ (a →2 c)))) | ||
Theorem | oadistc0 1021 | Pre-distributive law. Note that the inference of the second hypothesis from the first may be an OM theorem. (Contributed by NM, 30-Nov-1998.) |
d ≤ ((a →2 b) ∩ (a →2 c)) & ((a →2 c) ∩ ((a →2 b) ∩ ((b ∪ c)⊥ ∪ d))) ≤ (((a →2 b) ∩ (b ∪ c)⊥ ) ∪ d) ⇒ ((a →2 b) ∩ ((b ∪ c)⊥ ∪ d)) = (((a →2 b) ∩ (b ∪ c)⊥ ) ∪ d) | ||
Theorem | oadistc 1022 | Distributive law. (Contributed by NM, 21-Nov-1998.) |
d ≤ ((a →2 b) ∩ (a →2 c)) & ((a →2 b) ∩ ((b ∪ c)⊥ ∪ d)) ≤ (((a →2 b) ∩ (b ∪ c)⊥ ) ∪ d) ⇒ ((a →2 b) ∩ ((b ∪ c)⊥ ∪ d)) = (((a →2 b) ∩ (b ∪ c)⊥ ) ∪ ((a →2 b) ∩ d)) | ||
Theorem | oadistd 1023 | OA distributive law. (Contributed by NM, 21-Nov-1998.) |
d ≤ (a →2 b) & e ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) & f ≤ ((b ∪ c) →0 ((a →2 b) ∩ (a →2 c))) & (d ∩ (a →2 c)) ≤ f ⇒ (d ∩ (e ∪ f)) = ((d ∩ e) ∪ (d ∩ f)) | ||
Theorem | 3oa2 1024 | Alternate form for the 3-variable orthoarguesion law. (Contributed by NM, 27-May-2004.) |
((a →1 c) ∩ (((a →1 c) ∩ (b →1 c)) ∪ ((a⊥ →1 c) ∩ (b⊥ →1 c)))) ≤ (b →1 c) | ||
Theorem | 3oa3 1025 | 3-variable orthoarguesion law expressed with the 3OA identity abbreviation. (Contributed by NM, 27-May-2004.) |
((a →1 c) ∩ (a ≡ c ≡OA b)) ≤ (b →1 c) | ||
Axiom | ax-oal4 1026 | Orthoarguesian law (4-variable version). (Contributed by NM, 1-Dec-1998.) |
a ≤ b⊥ & c ≤ d⊥ ⇒ ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) | ||
Theorem | oa4cl 1027 | 4-variable OA closed equational form. (Contributed by NM, 1-Dec-1998.) |
((a ∪ (b ∩ a⊥ )) ∩ (c ∪ (d ∩ c⊥ ))) ≤ ((b ∩ a⊥ ) ∪ (a ∩ (c ∪ ((a ∪ c) ∩ ((b ∩ a⊥ ) ∪ (d ∩ c⊥ )))))) | ||
Theorem | oa43v 1028 | Derivation of 3-variable OA from 4-variable OA. (Contributed by NM, 28-Nov-1998.) |
((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) | ||
Theorem | oa3moa3 1029 | 4-variable 3OA to 5-variable Mayet's 3OA. (Contributed by NM, 3-Apr-2009.) (Revised by NM, 31-Mar-2011.) |
a ≤ b⊥ & c ≤ d⊥ & d ≤ e⊥ & e ≤ c⊥ ⇒ ((a ∪ b) ∩ ((c ∪ d) ∪ e)) ≤ (a ∪ (((b ∩ (c ∪ ((b ∪ c) ∩ ((a ∪ d) ∪ e)))) ∩ (d ∪ ((b ∪ d) ∩ ((a ∪ c) ∪ e)))) ∩ (e ∪ ((b ∪ e) ∩ ((a ∪ c) ∪ d))))) | ||
Axiom | ax-oa6 1030 | Orthoarguesian law (6-variable version). (Contributed by NM, 29-Nov-1998.) |
a ≤ b⊥ & c ≤ d⊥ & e ≤ f⊥ ⇒ (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) | ||
Theorem | oa64v 1031 | Derivation of 4-variable OA from 6-variable OA. (Contributed by NM, 29-Nov-1998.) |
a ≤ b⊥ & c ≤ d⊥ ⇒ ((a ∪ b) ∩ (c ∪ d)) ≤ (b ∪ (a ∩ (c ∪ ((a ∪ c) ∩ (b ∪ d))))) | ||
Theorem | oa63v 1032 | Derivation of 3-variable OA from 6-variable OA. (Contributed by NM, 28-Nov-1998.) |
((a →2 b) ∩ ((b ∪ c)⊥ ∪ ((a →2 b) ∩ (a →2 c)))) ≤ (a →2 c) | ||
Axiom | ax-4oa 1033 | The proper 4-variable OA law. (Contributed by NM, 20-Jul-1999.) |
((a →1 d) ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))) ≤ (b →1 d) | ||
Theorem | axoa4 1034 | The proper 4-variable OA law. (Contributed by NM, 20-Jul-1999.) |
(a⊥ ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))))) ≤ d | ||
Theorem | axoa4b 1035 | Proper 4-variable OA law variant. (Contributed by NM, 22-Dec-1998.) |
((a →1 d) ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))))) ≤ d | ||
Theorem | oa6 1036 | Derivation of 6-variable orthoarguesian law from 4-variable version. (Contributed by NM, 18-Dec-1998.) |
a ≤ b⊥ & c ≤ d⊥ & e ≤ f⊥ ⇒ (((a ∪ b) ∩ (c ∪ d)) ∩ (e ∪ f)) ≤ (b ∪ (a ∩ (c ∪ (((a ∪ c) ∩ (b ∪ d)) ∩ (((a ∪ e) ∩ (b ∪ f)) ∪ ((c ∪ e) ∩ (d ∪ f))))))) | ||
Theorem | axoa4a 1037 | Proper 4-variable OA law variant. (Contributed by NM, 22-Dec-1998.) |
((a →1 d) ∩ (a ∪ (b ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))))) ≤ (((a ∩ d) ∪ (b ∩ d)) ∪ (c ∩ d)) | ||
Theorem | axoa4d 1038 | Proper 4-variable OA law variant. (Contributed by NM, 24-Dec-1998.) |
(a ∩ (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))))) ≤ (b⊥ →1 d) | ||
Theorem | 4oa 1039 | Variant of proper 4-OA. (Contributed by NM, 29-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) ⇒ ((a →1 d) ∩ f) ≤ (b →1 d) | ||
Theorem | 4oaiii 1040 | Proper OA analog to Godowski/Greechie, Eq. III. (Contributed by NM, 29-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) ⇒ ((a →1 d) ∩ f) = ((b →1 d) ∩ f) | ||
Theorem | 4oath1 1041 | Proper 4-OA theorem. (Contributed by NM, 29-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) ⇒ ((a →1 d) ∩ f) = ((a →1 d) ∩ (b →1 d)) | ||
Theorem | 4oagen1 1042 | "Generalized" 4-OA. (Contributed by NM, 29-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) & g ≤ f ⇒ ((a →1 d) ∩ (g ∪ ((a →1 d) ∩ (b →1 d)))) = ((a →1 d) ∩ (b →1 d)) | ||
Theorem | 4oagen1b 1043 | "Generalized" OA. (Contributed by NM, 29-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) & g ≤ f & h ≤ (a →1 d) ⇒ (h ∩ (g ∪ ((a →1 d) ∩ (b →1 d)))) = (h ∩ (b →1 d)) | ||
Theorem | 4oadist 1044 | OA Distributive law. This is equivalent to the 6-variable OA law, as shown by Theorem d6oa 997. (Contributed by NM, 29-Dec-1998.) |
e = (((a ∩ c) ∪ ((a →1 d) ∩ (c →1 d))) ∩ ((b ∩ c) ∪ ((b →1 d) ∩ (c →1 d)))) & f = (((a ∩ b) ∪ ((a →1 d) ∩ (b →1 d))) ∪ e) & h ≤ (a →1 d) & j ≤ f & k ≤ f & (h ∩ (b →1 d)) ≤ k ⇒ (h ∩ (j ∪ k)) = ((h ∩ j) ∪ (h ∩ k)) | ||
Axiom | ax-newstateeq 1045 |
This is the simplest known example of an equation implied by the set of
Mayet--Godowski equations that is independent from all Godowski equations.
It was discovered by Norman Megill and Mladen Pavicic between 1997 and
August 2003. This is Equation (54) in
Mladen Pavicic, Norman D. Megill, Quantum Logic and Quantum Computation, in Handbook of Quantum Logic and Quantum Structures, Volume Quantum Structures, Elsevier, Amsterdam, 2007, pp. 751--787. https://arxiv.org/abs/0812.3072 and Equation (15) in Mladen Pavicic, Brendan D. McKay, Norman D. Megill, Kresimir Fresl, Graph Approach to Quantum Systems, Journal of Mathematical Physics, Volume 51, Issue 10, October 2010. https://arxiv.org/abs/1004.0776 (Contributed by NM, 1-Jan-1998.) |
(((a →1 b) →1 (c →1 b)) ∩ ((a →1 c) ∩ (b →1 a))) ≤ (c →1 a) | ||
Theorem | lem3.3.2 1046 | Equation 3.2 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
a = 1 & (a →0 b) = 1 ⇒ b = 1 | ||
Definition | df-id5 1047 | Define asymmetrical identity (for "Non-Orthomodular Models..." paper). (Contributed by Roy F. Longton, 27-Jun-2005.) |
(a ≡5 b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | ||
Definition | df-b1 1048 | Define biconditional for →1 . (Contributed by Roy F. Longton, 27-Jun-2005.) |
(a ↔1 b) = ((a →1 b) ∩ (b →1 a)) | ||
Theorem | lem3.3.3lem1 1049 | Lemma for lem3.3.3 1052. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 b) ≤ (a →1 b) | ||
Theorem | lem3.3.3lem2 1050 | Lemma for lem3.3.3 1052. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 b) ≤ (b →1 a) | ||
Theorem | lem3.3.3lem3 1051 | Lemma for lem3.3.3 1052. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 b) ≤ ((a →1 b) ∩ (b →1 a)) | ||
Theorem | lem3.3.3 1052 | Equation 3.3 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 27-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
((a ≡5 b) →0 (a ↔1 b)) = 1 | ||
Theorem | lem3.3.4 1053 | Equation 3.4 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(b →2 a) = 1 ⇒ (a →2 (a ≡5 b)) = (a ≡5 b) | ||
Theorem | lem3.3.5lem 1054 | A fundamental property in quantum logic. Lemma for lem3.3.5 1055. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
1 ≤ a ⇒ a = 1 | ||
Theorem | lem3.3.5 1055 | Equation 3.5 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 b) = 1 ⇒ (a →1 (b ∪ c)) = 1 | ||
Theorem | lem3.3.6 1056 | Equation 3.6 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →2 (b ∪ c)) = ((a ∪ c) →2 (b ∪ c)) | ||
Theorem | lem3.3.7i0e1 1057 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the first part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →0 (a ∩ b)) = (a ≡0 (a ∩ b)) | ||
Theorem | lem3.3.7i0e2 1058 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡0 (a ∩ b)) = ((a ∩ b) ≡0 a) | ||
Theorem | lem3.3.7i0e3 1059 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 0, and this is the third part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →0 (a ∩ b)) = (a →1 b) | ||
Theorem | lem3.3.7i1e1 1060 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 1, and this is the first part of the equation. (Contributed by Roy F. Longton, 3-Jul-2005.) |
(a →1 (a ∩ b)) = (a ≡1 (a ∩ b)) | ||
Theorem | lem3.3.7i1e2 1061 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 1, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡1 (a ∩ b)) = ((a ∩ b) ≡1 a) | ||
Theorem | lem3.3.7i1e3 1062 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 1, and this is the third part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →1 (a ∩ b)) = (a →1 b) | ||
Theorem | lem3.3.7i2e1 1063 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 2, and this is the first part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →2 (a ∩ b)) = (a ≡2 (a ∩ b)) | ||
Theorem | lem3.3.7i2e2 1064 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 2, and this is the second part of the equation. (Contributed by Roy F. Longton, 3-Jul-2005.) |
(a ≡2 (a ∩ b)) = ((a ∩ b) ≡2 a) | ||
Theorem | lem3.3.7i2e3 1065 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 2, and this is the third part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →2 (a ∩ b)) = (a →1 b) | ||
Theorem | lem3.3.7i3e1 1066 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 3, and this is the first part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →3 (a ∩ b)) = (a ≡3 (a ∩ b)) | ||
Theorem | lem3.3.7i3e2 1067 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 3, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡3 (a ∩ b)) = ((a ∩ b) ≡3 a) | ||
Theorem | lem3.3.7i3e3 1068 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 3, and this is the third part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →3 (a ∩ b)) = (a →1 b) | ||
Theorem | lem3.3.7i4e1 1069 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 4, and this is the first part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →4 (a ∩ b)) = (a ≡4 (a ∩ b)) | ||
Theorem | lem3.3.7i4e2 1070 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 4, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡4 (a ∩ b)) = ((a ∩ b) ≡4 a) | ||
Theorem | lem3.3.7i4e3 1071 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 4, and this is the third part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →4 (a ∩ b)) = (a →1 b) | ||
Theorem | lem3.3.7i5e1 1072 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the first part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →5 (a ∩ b)) = (a ≡5 (a ∩ b)) | ||
Theorem | lem3.3.7i5e2 1073 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 (a ∩ b)) = ((a ∩ b) ≡5 a) | ||
Theorem | lem3.3.7i5e3 1074 | Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the third part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →5 (a ∩ b)) = (a →1 b) | ||
Theorem | lem3.4.1 1075 | Equation 3.9 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 3-Jul-2005.) |
((a →1 b) →0 (a →2 b)) = 1 | ||
Theorem | lem3.4.3 1076 | Equation 3.11 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →2 b) = 1 ⇒ (a →2 (a ≡5 b)) = 1 | ||
Theorem | lem3.4.4 1077 | Equation 3.12 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a →2 b) = 1 & (b →2 a) = 1 ⇒ (a ≡5 b) = 1 | ||
Theorem | lem3.4.5 1078 | Equation 3.13 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 b) = 1 ⇒ (a →2 (b ∪ c)) = 1 | ||
Theorem | lem3.4.6 1079 | Equation 3.14 of [PavMeg1999] p. 9. (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
(a ≡5 b) = 1 ⇒ ((a ∪ c) ≡5 (b ∪ c)) = 1 | ||
Theorem | thm3.8i1lem 1080 | Lemma intended for ~ thm3.8i1 . (Contributed by Roy F. Longton, 30-Jun-2005.) (Revised by Roy F. Longton, 31-Mar-2011.) |
(a ≡1 b) = ((b →0 a) ∩ (a →1 b)) | ||
Theorem | thm3.8i5 1081 | (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 31-Mar-2011.) |
(a ≡5 b) = 1 ⇒ ((a ∪ c) ≡5 (b ∪ c)) = 1 | ||
Theorem | lem4.6.2e1 1082 | Equation 4.10 of [MegPav2000] p. 23. This is the first part of the equation. Note that Lemma 4.6.1 is u1lemaa 600. (Contributed by Roy F. Longton, 29-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
((a →1 b) ∩ (a⊥ →1 b)) = ((a →1 b) ∩ b) | ||
Theorem | lem4.6.2e2 1083 | Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →1 b) ∩ b) = ((a ∩ b) ∪ (a⊥ ∩ b)) | ||
Theorem | lem4.6.3le1 1084 | Equation 4.11 of [MegPav2000] p. 23. This is the first part of the equation. (Contributed by Roy F. Longton, 1-Jul-2005.) |
(a⊥ →1 b)⊥ ≤ a⊥ | ||
Theorem | lem4.6.3le2 1085 | Equation 4.11 of [MegPav2000] p. 23. This is the second part of the equation. (Contributed by Roy F. Longton, 1-Jul-2005.) |
a⊥ ≤ (a →1 b) | ||
Theorem | lem4.6.4 1086 | Equation 4.12 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →1 b) →1 b) = (a⊥ →1 b) | ||
Theorem | lem4.6.5 1087 | Equation 4.13 of [MegPav2000] p. 23. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →1 b)⊥ →1 b) = (a →1 b) | ||
Theorem | lem4.6.6i0j1 1088 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 1. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →0 b) ∪ (a →1 b)) = (a →0 b) | ||
Theorem | lem4.6.6i0j2 1089 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 2. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →0 b) ∪ (a →2 b)) = (a →0 b) | ||
Theorem | lem4.6.6i0j3 1090 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 3. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →0 b) ∪ (a →3 b)) = (a →0 b) | ||
Theorem | lem4.6.6i0j4 1091 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 0, and j is set to 4. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →0 b) ∪ (a →4 b)) = (a →0 b) | ||
Theorem | lem4.6.6i1j0 1092 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 0. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →1 b) ∪ (a →0 b)) = (a →0 b) | ||
Theorem | lem4.6.6i1j2 1093 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 2. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →1 b) ∪ (a →2 b)) = (a →0 b) | ||
Theorem | lem4.6.6i1j3 1094 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 1, and j is set to 3. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →1 b) ∪ (a →3 b)) = (a →0 b) | ||
Theorem | lem4.6.6i2j0 1095 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 2, and j is set to 0. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →2 b) ∪ (a →0 b)) = (a →0 b) | ||
Theorem | lem4.6.6i2j1 1096 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 2, and j is set to 1. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →2 b) ∪ (a →1 b)) = (a →0 b) | ||
Theorem | lem4.6.6i2j4 1097 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 2, and j is set to 4. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →2 b) ∪ (a →4 b)) = (a →0 b) | ||
Theorem | lem4.6.6i3j0 1098 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 3, and j is set to 0. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →3 b) ∪ (a →0 b)) = (a →0 b) | ||
Theorem | lem4.6.6i3j1 1099 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 3, and j is set to 1. (Contributed by Roy F. Longton, 1-Jul-2005.) |
((a →3 b) ∪ (a →1 b)) = (a →0 b) | ||
Theorem | lem4.6.6i4j0 1100 | Equation 4.14 of [MegPav2000] p. 23. The variable i in the paper is set to 4, and j is set to 0. (Contributed by Roy F. Longton, 2-Jul-2005.) |
((a →4 b) ∪ (a →0 b)) = (a →0 b) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |