QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ax-newstateeq GIF version

Axiom ax-newstateeq 1045
Description: This is the simplest known example of an equation implied by the set of Mayet--Godowski equations that is independent from all Godowski equations. It was discovered by Norman Megill and Mladen Pavicic between 1997 and August 2003. This is Equation (54) in

Mladen Pavicic, Norman D. Megill, Quantum Logic and Quantum Computation, in Handbook of Quantum Logic and Quantum Structures, Volume Quantum Structures, Elsevier, Amsterdam, 2007, pp. 751--787. https://arxiv.org/abs/0812.3072

and Equation (15) in

Mladen Pavicic, Brendan D. McKay, Norman D. Megill, Kresimir Fresl, Graph Approach to Quantum Systems, Journal of Mathematical Physics, Volume 51, Issue 10, October 2010. https://arxiv.org/abs/1004.0776

(Contributed by NM, 1-Jan-1998.)

Assertion
Ref Expression
ax-newstateeq (((a1 b) →1 (c1 b)) ∩ ((a1 c) ∩ (b1 a))) ≤ (c1 a)

Detailed syntax breakdown of Axiom ax-newstateeq
StepHypRef Expression
1 wva . . . . 5 term  a
2 wvb . . . . 5 term  b
31, 2wi1 12 . . . 4 term  (a1 b)
4 wvc . . . . 5 term  c
54, 2wi1 12 . . . 4 term  (c1 b)
63, 5wi1 12 . . 3 term  ((a1 b) →1 (c1 b))
71, 4wi1 12 . . . 4 term  (a1 c)
82, 1wi1 12 . . . 4 term  (b1 a)
97, 8wa 7 . . 3 term  ((a1 c) ∩ (b1 a))
106, 9wa 7 . 2 term  (((a1 b) →1 (c1 b)) ∩ ((a1 c) ∩ (b1 a)))
114, 1wi1 12 . 2 term  (c1 a)
1210, 11wle 2 1 wff  (((a1 b) →1 (c1 b)) ∩ ((a1 c) ∩ (b1 a))) ≤ (c1 a)
Colors of variables: term
This axiom is referenced by: (None)
  Copyright terms: Public domain W3C validator