Proof of Theorem 4oadist
Step | Hyp | Ref
| Expression |
1 | | 4oadist.2 |
. . . . . . . . . 10
j ≤ f |
2 | | 4oadist.3 |
. . . . . . . . . 10
k ≤ f |
3 | 1, 2 | le2or 168 |
. . . . . . . . 9
(j ∪ k) ≤ (f ∪
f) |
4 | | oridm 110 |
. . . . . . . . 9
(f ∪ f) = f |
5 | 3, 4 | lbtr 139 |
. . . . . . . 8
(j ∪ k) ≤ f |
6 | 5 | lelan 167 |
. . . . . . 7
(h ∩ (j ∪ k)) ≤
(h ∩ f) |
7 | 6 | df2le2 136 |
. . . . . 6
((h ∩ (j ∪ k))
∩ (h ∩ f)) = (h ∩
(j ∪ k)) |
8 | 7 | ax-r1 35 |
. . . . 5
(h ∩ (j ∪ k)) =
((h ∩ (j ∪ k))
∩ (h ∩ f)) |
9 | | 4oa.2 |
. . . . . . . . 9
f = (((a ∩ b) ∪
((a →1 d) ∩ (b
→1 d))) ∪ e) |
10 | | or32 82 |
. . . . . . . . 9
(((a ∩ b) ∪ ((a
→1 d) ∩ (b →1 d))) ∪ e) =
(((a ∩ b) ∪ e)
∪ ((a →1 d) ∩ (b
→1 d))) |
11 | 9, 10 | ax-r2 36 |
. . . . . . . 8
f = (((a ∩ b) ∪
e) ∪ ((a →1 d) ∩ (b
→1 d))) |
12 | 11 | lan 77 |
. . . . . . 7
(h ∩ f) = (h ∩
(((a ∩ b) ∪ e)
∪ ((a →1 d) ∩ (b
→1 d)))) |
13 | | 4oa.1 |
. . . . . . . 8
e = (((a ∩ c) ∪
((a →1 d) ∩ (c
→1 d))) ∩ ((b ∩ c) ∪
((b →1 d) ∩ (c
→1 d)))) |
14 | | leo 158 |
. . . . . . . . 9
((a ∩ b) ∪ e) ≤
(((a ∩ b) ∪ e)
∪ ((a →1 d) ∩ (b
→1 d))) |
15 | 11 | ax-r1 35 |
. . . . . . . . 9
(((a ∩ b) ∪ e)
∪ ((a →1 d) ∩ (b
→1 d))) = f |
16 | 14, 15 | lbtr 139 |
. . . . . . . 8
((a ∩ b) ∪ e) ≤
f |
17 | | 4oadist.1 |
. . . . . . . 8
h ≤ (a →1 d) |
18 | 13, 9, 16, 17 | 4oagen1b 1043 |
. . . . . . 7
(h ∩ (((a ∩ b) ∪
e) ∪ ((a →1 d) ∩ (b
→1 d)))) = (h ∩ (b
→1 d)) |
19 | 12, 18 | ax-r2 36 |
. . . . . 6
(h ∩ f) = (h ∩
(b →1 d)) |
20 | 19 | lan 77 |
. . . . 5
((h ∩ (j ∪ k))
∩ (h ∩ f)) = ((h ∩
(j ∪ k)) ∩ (h
∩ (b →1 d))) |
21 | 8, 20 | ax-r2 36 |
. . . 4
(h ∩ (j ∪ k)) =
((h ∩ (j ∪ k))
∩ (h ∩ (b →1 d))) |
22 | | lear 161 |
. . . . 5
((h ∩ (j ∪ k))
∩ (h ∩ (b →1 d))) ≤ (h
∩ (b →1 d)) |
23 | | 4oadist.4 |
. . . . . . . . 9
(h ∩ (b →1 d)) ≤ k |
24 | 23 | df2le2 136 |
. . . . . . . 8
((h ∩ (b →1 d)) ∩ k) =
(h ∩ (b →1 d)) |
25 | 24 | ax-r1 35 |
. . . . . . 7
(h ∩ (b →1 d)) = ((h ∩
(b →1 d)) ∩ k) |
26 | | an32 83 |
. . . . . . 7
((h ∩ (b →1 d)) ∩ k) =
((h ∩ k) ∩ (b
→1 d)) |
27 | 25, 26 | ax-r2 36 |
. . . . . 6
(h ∩ (b →1 d)) = ((h ∩
k) ∩ (b →1 d)) |
28 | | lea 160 |
. . . . . 6
((h ∩ k) ∩ (b
→1 d)) ≤ (h ∩ k) |
29 | 27, 28 | bltr 138 |
. . . . 5
(h ∩ (b →1 d)) ≤ (h
∩ k) |
30 | 22, 29 | letr 137 |
. . . 4
((h ∩ (j ∪ k))
∩ (h ∩ (b →1 d))) ≤ (h
∩ k) |
31 | 21, 30 | bltr 138 |
. . 3
(h ∩ (j ∪ k)) ≤
(h ∩ k) |
32 | | leor 159 |
. . 3
(h ∩ k) ≤ ((h
∩ j) ∪ (h ∩ k)) |
33 | 31, 32 | letr 137 |
. 2
(h ∩ (j ∪ k)) ≤
((h ∩ j) ∪ (h
∩ k)) |
34 | | ledi 174 |
. 2
((h ∩ j) ∪ (h
∩ k)) ≤ (h ∩ (j ∪
k)) |
35 | 33, 34 | lebi 145 |
1
(h ∩ (j ∪ k)) =
((h ∩ j) ∪ (h
∩ k)) |