Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-le | GIF version |
Description: Define "less than or equal to" analogue. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
df-le | (a ≤2 b) = ((a ∪ b) ≡ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wle2 10 | . 2 term (a ≤2 b) |
4 | 1, 2 | wo 6 | . . 3 term (a ∪ b) |
5 | 4, 2 | tb 5 | . 2 term ((a ∪ b) ≡ b) |
6 | 3, 5 | wb 1 | 1 wff (a ≤2 b) = ((a ∪ b) ≡ b) |
Colors of variables: term |
This definition is referenced by: lei2 346 wdf-le1 378 wdf-le2 379 wle0 390 wler 391 |
Copyright terms: Public domain | W3C validator |