QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  lei2 GIF version

Theorem lei2 346
Description: "Less than" analogue is equal to 2 implication. (Contributed by NM, 28-Jan-2002.)
Assertion
Ref Expression
lei2 (a2 b) = (a2 b)

Proof of Theorem lei2
StepHypRef Expression
1 mi 125 . 2 ((ab) ≡ b) = (b ∪ (ab ))
2 df-le 129 . 2 (a2 b) = ((ab) ≡ b)
3 df-i2 45 . 2 (a2 b) = (b ∪ (ab ))
41, 2, 33tr1 63 1 (a2 b) = (a2 b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  tb 5  wo 6  wa 7  2 wle2 10  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i2 45  df-le 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator