QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wdf-le2 GIF version

Theorem wdf-le2 379
Description: Define "less than or equal to" analogue for analogue of =. (Contributed by NM, 27-Sep-1997.)
Hypothesis
Ref Expression
wdf-le2.1 (a2 b) = 1
Assertion
Ref Expression
wdf-le2 ((ab) ≡ b) = 1

Proof of Theorem wdf-le2
StepHypRef Expression
1 df-le 129 . . 3 (a2 b) = ((ab) ≡ b)
21ax-r1 35 . 2 ((ab) ≡ b) = (a2 b)
3 wdf-le2.1 . 2 (a2 b) = 1
42, 3ax-r2 36 1 ((ab) ≡ b) = 1
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wo 6  1wt 8  2 wle2 10
This theorem was proved from axioms:  ax-r1 35  ax-r2 36
This theorem depends on definitions:  df-le 129
This theorem is referenced by:  wom4  380  wdf2le2  386  wleror  393  wlecon  395  wletr  396  wbltr  397  wlebi  402
  Copyright terms: Public domain W3C validator