QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  oadp35lemf GIF version

Theorem oadp35lemf 1210
Description: Part of proof (3)=>(5) in Day/Pickering 1982. (Contributed by NM, 12-Jul-2015.)
Hypotheses
Ref Expression
oadp35lem.1 c0 = ((a1a2) ∩ (b1b2))
oadp35lem.2 c1 = ((a0a2) ∩ (b0b2))
oadp35lem.3 c2 = ((a0a1) ∩ (b0b1))
oadp35lem.4 p0 = ((a1b1) ∩ (a2b2))
oadp35lem.5 p = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
Assertion
Ref Expression
oadp35lemf (a0p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0c1)))))

Proof of Theorem oadp35lemf
StepHypRef Expression
1 leo 158 . 2 a0 ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0c1)))))
2 oadp35lem.1 . . 3 c0 = ((a1a2) ∩ (b1b2))
3 oadp35lem.2 . . 3 c1 = ((a0a2) ∩ (b0b2))
4 oadp35lem.3 . . 3 c2 = ((a0a1) ∩ (b0b1))
5 oadp35lem.4 . . 3 p0 = ((a1b1) ∩ (a2b2))
6 oadp35lem.5 . . 3 p = (((a0b0) ∩ (a1b1)) ∩ (a2b2))
72, 3, 4, 5, 6oadp35lemg 1209 . 2 p ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0c1)))))
81, 7lel2or 170 1 (a0p) ≤ (a0 ∪ (b0 ∩ (b1 ∪ (c2 ∩ (c0c1)))))
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1122  ax-arg 1153
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator