Detailed syntax breakdown of Axiom ax-arg
Step | Hyp | Ref
| Expression |
1 | | wva0 |
. . . 4
term a0 |
2 | | wva1 |
. . . 4
term a1 |
3 | 1, 2 | wo 6 |
. . 3
term (a0 ∪ a1) |
4 | | wvb0 |
. . . 4
term b0 |
5 | | wvb1 |
. . . 4
term b1 |
6 | 4, 5 | wo 6 |
. . 3
term (b0 ∪ b1) |
7 | 3, 6 | wa 7 |
. 2
term ((a0 ∪ a1) ∩ (b0 ∪ b1)) |
8 | | wva2 |
. . . . 5
term a2 |
9 | 1, 8 | wo 6 |
. . . 4
term (a0 ∪ a2) |
10 | | wvb2 |
. . . . 5
term b2 |
11 | 4, 10 | wo 6 |
. . . 4
term (b0 ∪ b2) |
12 | 9, 11 | wa 7 |
. . 3
term ((a0 ∪ a2) ∩ (b0 ∪ b2)) |
13 | 2, 8 | wo 6 |
. . . 4
term (a1 ∪ a2) |
14 | 5, 10 | wo 6 |
. . . 4
term (b1 ∪ b2) |
15 | 13, 14 | wa 7 |
. . 3
term ((a1 ∪ a2) ∩ (b1 ∪ b2)) |
16 | 12, 15 | wo 6 |
. 2
term (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |
17 | 7, 16 | wle 2 |
1
wff ((a0 ∪ a1) ∩ (b0 ∪ b1)) ≤ (((a0 ∪ a2) ∩ (b0 ∪ b2)) ∪ ((a1 ∪ a2) ∩ (b1 ∪ b2))) |