![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > df-a | GIF version |
Description: Define conjunction. (Contributed by NM, 9-Aug-1997.) |
Ref | Expression |
---|---|
df-a | (a ∩ b) = (a⊥ ∪ b⊥ )⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wa 7 | . 2 term (a ∩ b) |
4 | 1 | wn 4 | . . . 4 term a⊥ |
5 | 2 | wn 4 | . . . 4 term b⊥ |
6 | 4, 5 | wo 6 | . . 3 term (a⊥ ∪ b⊥ ) |
7 | 6 | wn 4 | . 2 term (a⊥ ∪ b⊥ )⊥ |
8 | 3, 7 | wb 1 | 1 wff (a ∩ b) = (a⊥ ∪ b⊥ )⊥ |
Colors of variables: term |
This definition is referenced by: ancom 74 anass 76 lan 77 oran 87 anor1 88 anor2 89 oran3 93 dfb 94 dfnb 95 an1 106 an0 108 anidm 111 orabs 120 anabs 121 di 126 wwfh1 216 wwfh2 217 wwfh3 218 wwfh4 219 ka4lem 229 ni31 250 ud1lem0c 277 ud4lem0c 280 ud5lem0c 281 wran 369 wcomlem 382 wcomdr 421 wfh1 423 wfh2 424 wfh3 425 wfh4 426 wcom2an 428 woml6 436 omla 447 comcom 453 comdr 466 df2c1 468 fh1 469 fh2 470 fh3 471 fh4 472 com2an 484 gsth2 490 i3ran 535 i3con 551 ud1lem1 560 ud3lem3 576 ud4lem1b 578 ud4lem1c 579 ud4lem1 581 ud5lem1b 587 ud5lem1 589 ud5lem3 594 u4lemona 628 u1lemonb 635 u1lemnaa 640 u5lemnaa 644 u4lemnab 653 u5lemnab 654 u1lemnona 665 u2lemnona 666 u3lemnona 667 u4lemnona 668 u5lemnona 669 u1lemnonb 675 u2lemnonb 676 u3lemnonb 677 u4lemnonb 678 u5lemnonb 679 u3lem1n 741 u4lem1n 742 u5lem1n 743 u4lem3n 755 u5lem3n 756 u3lem12 788 i1abs 801 test2 803 2oath1 826 elimconslem 867 elimcons 868 mlaconjo 886 oa6todual 952 oa8todual 971 oal1 1000 |
Copyright terms: Public domain | W3C validator |