QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wanass GIF version

Theorem wanass 204
Description: Associative law. (Contributed by NM, 27-Sep-1997.)
Assertion
Ref Expression
wanass (((ab) ∩ c) ≡ (a ∩ (bc))) = 1

Proof of Theorem wanass
StepHypRef Expression
1 anass 76 . 2 ((ab) ∩ c) = (a ∩ (bc))
21bi1 118 1 (((ab) ∩ c) ≡ (a ∩ (bc))) = 1
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wa 7  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator