Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > bi1 | GIF version |
Description: Identity inference. (Contributed by NM, 30-Aug-1997.) |
Ref | Expression |
---|---|
bi1.1 | a = b |
Ref | Expression |
---|---|
bi1 | (a ≡ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi1.1 | . . 3 a = b | |
2 | 1 | rbi 98 | . 2 (a ≡ b) = (b ≡ b) |
3 | biid 116 | . 2 (b ≡ b) = 1 | |
4 | 2, 3 | ax-r2 36 | 1 (a ≡ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: 1bi 119 wa1 191 wa2 192 wa3 193 wa4 194 wa5 195 wa6 196 wa5b 200 wa5c 201 wcon 202 wancom 203 wanass 204 ska2a 226 ska2b 227 ska5 233 ska6 234 ska7 235 ska8 236 ska9 237 ska10 238 ska12 240 bina1 282 bina2 283 wom5 381 wcomlem 382 wdf-c1 383 wle1 389 wle0 390 wlel 392 wleror 393 wleran 394 wlecon 395 wletr 396 wbile 401 wlebi 402 wle2or 403 wle2an 404 wledi 405 wledio 406 wcom0 407 wcom1 408 wlecom 409 wcomcom2 415 wcomd 418 wcom3ii 419 wcomcom5 420 wcomdr 421 wcom3i 422 wfh1 423 wfh2 424 wfh3 425 wfh4 426 wcom2or 427 wcom2an 428 wnbdi 429 wlem14 430 ska2 432 ska4 433 woml6 436 woml7 437 i3aa 521 i3abs2 523 i3orcom 525 i3ancom 526 bi3tr 527 i3btr 528 i3th6 548 |
Copyright terms: Public domain | W3C validator |