Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > womaan | GIF version |
Description: Weak OM-like absorption law for ortholattices. (Contributed by NM, 8-Nov-1998.) |
Ref | Expression |
---|---|
womaan | (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) = (a ∪ (a⊥ ∩ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leo 158 | . . 3 a ≤ (a ∪ (a⊥ ∩ b)) | |
2 | lear 161 | . . 3 (a⊥ ∩ (a ∪ (a⊥ ∩ b))) ≤ (a ∪ (a⊥ ∩ b)) | |
3 | 1, 2 | lel2or 170 | . 2 (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) ≤ (a ∪ (a⊥ ∩ b)) |
4 | leo 158 | . . 3 a ≤ (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) | |
5 | lea 160 | . . . . 5 (a⊥ ∩ b) ≤ a⊥ | |
6 | leor 159 | . . . . 5 (a⊥ ∩ b) ≤ (a ∪ (a⊥ ∩ b)) | |
7 | 5, 6 | ler2an 173 | . . . 4 (a⊥ ∩ b) ≤ (a⊥ ∩ (a ∪ (a⊥ ∩ b))) |
8 | leor 159 | . . . 4 (a⊥ ∩ (a ∪ (a⊥ ∩ b))) ≤ (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) | |
9 | 7, 8 | letr 137 | . . 3 (a⊥ ∩ b) ≤ (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) |
10 | 4, 9 | lel2or 170 | . 2 (a ∪ (a⊥ ∩ b)) ≤ (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) |
11 | 3, 10 | lebi 145 | 1 (a ∪ (a⊥ ∩ (a ∪ (a⊥ ∩ b)))) = (a ∪ (a⊥ ∩ b)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |