Proof of Theorem letr
| Step | Hyp | Ref
| Expression |
| 1 | | letr.1 |
. . . . . . . 8
a ≤ b |
| 2 | 1 | df-le2 131 |
. . . . . . 7
(a ∪ b) = b |
| 3 | 2 | ax-r5 38 |
. . . . . 6
((a ∪ b) ∪ c) =
(b ∪ c) |
| 4 | 3 | ax-r1 35 |
. . . . 5
(b ∪ c) = ((a ∪
b) ∪ c) |
| 5 | | letr.2 |
. . . . . 6
b ≤ c |
| 6 | 5 | df-le2 131 |
. . . . 5
(b ∪ c) = c |
| 7 | | ax-a3 32 |
. . . . 5
((a ∪ b) ∪ c) =
(a ∪ (b ∪ c)) |
| 8 | 4, 6, 7 | 3tr2 64 |
. . . 4
c = (a ∪ (b ∪
c)) |
| 9 | 8 | lan 77 |
. . 3
(a ∩ c) = (a ∩
(a ∪ (b ∪ c))) |
| 10 | | anabs 121 |
. . 3
(a ∩ (a ∪ (b ∪
c))) = a |
| 11 | 9, 10 | ax-r2 36 |
. 2
(a ∩ c) = a |
| 12 | 11 | df2le1 135 |
1
a ≤ c |