![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > letr | GIF version |
Description: Transitive law for "less than or equal to". (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
letr.1 | a ≤ b |
letr.2 | b ≤ c |
Ref | Expression |
---|---|
letr | a ≤ c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letr.1 | . . . . . . . 8 a ≤ b | |
2 | 1 | df-le2 131 | . . . . . . 7 (a ∪ b) = b |
3 | 2 | ax-r5 38 | . . . . . 6 ((a ∪ b) ∪ c) = (b ∪ c) |
4 | 3 | ax-r1 35 | . . . . 5 (b ∪ c) = ((a ∪ b) ∪ c) |
5 | letr.2 | . . . . . 6 b ≤ c | |
6 | 5 | df-le2 131 | . . . . 5 (b ∪ c) = c |
7 | ax-a3 32 | . . . . 5 ((a ∪ b) ∪ c) = (a ∪ (b ∪ c)) | |
8 | 4, 6, 7 | 3tr2 64 | . . . 4 c = (a ∪ (b ∪ c)) |
9 | 8 | lan 77 | . . 3 (a ∩ c) = (a ∩ (a ∪ (b ∪ c))) |
10 | anabs 121 | . . 3 (a ∩ (a ∪ (b ∪ c))) = a | |
11 | 9, 10 | ax-r2 36 | . 2 (a ∩ c) = a |
12 | 11 | df2le1 135 | 1 a ≤ c |
Copyright terms: Public domain | W3C validator |