![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimparc | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimparc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprcd 158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 122 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biantr 894 elrab3t 2749 difprsnss 3532 elpw2g 3939 elon2 4139 ideqg 4515 elrnmpt1s 4612 elrnmptg 4614 fun11iun 5178 eqfnfv2 5298 fmpt 5351 elunirn 5437 spc2ed 5885 tposfo2 5916 tposf12 5918 dom2lem 6319 enfii 6409 ac6sfi 6431 ltexprlemm 6852 elreal2 7061 sizeeqf1oi 9812 |
Copyright terms: Public domain | W3C validator |