ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm Unicode version

Theorem ltexprlemm 6756
Description: Our constructed difference is inhabited. Lemma for ltexpri 6769. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemm  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6661 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4420 . . . . . . . 8  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
3 ltdfpr 6662 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) ) )
43biimpd 136 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )
52, 4mpcom 36 . . . . . . 7  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) ) )
6 simprrl 499 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
y  e.  ( 2nd `  A ) )
72simprd 111 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  B  e. 
P. )
8 prop 6631 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 prnmaxl 6644 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
108, 9sylan 271 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) y 
<Q  w )
11 ltexnqi 6565 . . . . . . . . . . . . . . . . . 18  |-  ( y 
<Q  w  ->  E. q  e.  Q.  ( y  +Q  q )  =  w )
1211reximi 2433 . . . . . . . . . . . . . . . . 17  |-  ( E. w  e.  ( 1st `  B ) y  <Q  w  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q
)  =  w )
1310, 12syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w  e.  ( 1st `  B ) E. q  e.  Q.  (
y  +Q  q )  =  w )
14 df-rex 2329 . . . . . . . . . . . . . . . 16  |-  ( E. w  e.  ( 1st `  B ) E. q  e.  Q.  ( y  +Q  q )  =  w  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1513, 14sylib 131 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
16 r19.42v 2484 . . . . . . . . . . . . . . . 16  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  <->  ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1716exbii 1512 . . . . . . . . . . . . . . 15  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  <->  E. w ( w  e.  ( 1st `  B
)  /\  E. q  e.  Q.  ( y  +Q  q )  =  w ) )
1815, 17sylibr 141 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w ) )
19 eleq1 2116 . . . . . . . . . . . . . . . . 17  |-  ( ( y  +Q  q )  =  w  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  <->  w  e.  ( 1st `  B ) ) )
2019biimparc 287 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  -> 
( y  +Q  q
)  e.  ( 1st `  B ) )
2120reximi 2433 . . . . . . . . . . . . . . 15  |-  ( E. q  e.  Q.  (
w  e.  ( 1st `  B )  /\  (
y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2221exlimiv 1505 . . . . . . . . . . . . . 14  |-  ( E. w E. q  e. 
Q.  ( w  e.  ( 1st `  B
)  /\  ( y  +Q  q )  =  w )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2318, 22syl 14 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
247, 23sylan 271 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  B ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
2524adantrl 455 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) )  ->  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) )
2625adantrl 455 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  ->  E. q  e.  Q.  ( y  +Q  q
)  e.  ( 1st `  B ) )
276, 26jca 294 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B ) ) ) )  -> 
( y  e.  ( 2nd `  A )  /\  E. q  e. 
Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
2827expr 361 . . . . . . . 8  |-  ( ( A  <P  B  /\  y  e.  Q. )  ->  ( ( y  e.  ( 2nd `  A
)  /\  y  e.  ( 1st `  B ) )  ->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
2928reximdva 2438 . . . . . . 7  |-  ( A 
<P  B  ->  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  y  e.  ( 1st `  B
) )  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
305, 29mpd 13 . . . . . 6  |-  ( A 
<P  B  ->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
31 r19.42v 2484 . . . . . . 7  |-  ( E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3231rexbii 2348 . . . . . 6  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y  e.  Q.  ( y  e.  ( 2nd `  A
)  /\  E. q  e.  Q.  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3330, 32sylibr 141 . . . . 5  |-  ( A 
<P  B  ->  E. y  e.  Q.  E. q  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
34 rexcom 2491 . . . . 5  |-  ( E. y  e.  Q.  E. q  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
3533, 34sylib 131 . . . 4  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y  e. 
Q.  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
362simpld 109 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  A  e. 
P. )
37 prop 6631 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
38 elprnqu 6638 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
3937, 38sylan 271 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4036, 39sylan 271 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
4140ex 112 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  ->  y  e.  Q. ) )
4241pm4.71rd 380 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( y  e.  ( 2nd `  A
)  <->  ( y  e. 
Q.  /\  y  e.  ( 2nd `  A ) ) ) )
4342anbi1d 446 . . . . . . . 8  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( (
y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) ) ) )
44 anass 387 . . . . . . . 8  |-  ( ( ( y  e.  Q.  /\  y  e.  ( 2nd `  A ) )  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4543, 44syl6bb 189 . . . . . . 7  |-  ( A 
<P  B  ->  ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
4645exbidv 1722 . . . . . 6  |-  ( A 
<P  B  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. y ( y  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) ) )
4746rexbidv 2344 . . . . 5  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y ( y  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
48 df-rex 2329 . . . . . 6  |-  ( E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. y
( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4948rexbii 2348 . . . . 5  |-  ( E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  E. q  e.  Q.  E. y ( y  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5047, 49syl6bbr 191 . . . 4  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  E. y  e.  Q.  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) ) )
5135, 50mpbird 160 . . 3  |-  ( A 
<P  B  ->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) )
52 ltexprlem.1 . . . . . 6  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
5352ltexprlemell 6754 . . . . 5  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5453rexbii 2348 . . . 4  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
55 ssid 2992 . . . . 5  |-  Q.  C_  Q.
56 rexss 3035 . . . . 5  |-  ( Q.  C_  Q.  ->  ( E. q  e.  Q.  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
5755, 56ax-mp 7 . . . 4  |-  ( E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  E. q  e.  Q.  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
5854, 57bitr4i 180 . . 3  |-  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  <->  E. q  e.  Q.  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
5951, 58sylibr 141 . 2  |-  ( A 
<P  B  ->  E. q  e.  Q.  q  e.  ( 1st `  C ) )
60 nfv 1437 . . 3  |-  F/ r  A  <P  B
61 nfre1 2382 . . 3  |-  F/ r E. r  e.  Q.  r  e.  ( 2nd `  C )
62 prmu 6634 . . . . 5  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  e.  Q.  r  e.  ( 2nd `  B ) )
63 rexex 2385 . . . . 5  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  B
)  ->  E. r 
r  e.  ( 2nd `  B ) )
6462, 63syl 14 . . . 4  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. r  r  e.  ( 2nd `  B
) )
657, 8, 643syl 17 . . 3  |-  ( A 
<P  B  ->  E. r 
r  e.  ( 2nd `  B ) )
66 elprnqu 6638 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
678, 66sylan 271 . . . . . 6  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
687, 67sylan 271 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  Q. )
69 prml 6633 . . . . . . . . 9  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
7037, 69syl 14 . . . . . . . 8  |-  ( A  e.  P.  ->  E. y  e.  Q.  y  e.  ( 1st `  A ) )
71 rexex 2385 . . . . . . . 8  |-  ( E. y  e.  Q.  y  e.  ( 1st `  A
)  ->  E. y 
y  e.  ( 1st `  A ) )
7236, 70, 713syl 17 . . . . . . 7  |-  ( A 
<P  B  ->  E. y 
y  e.  ( 1st `  A ) )
7372adantr 265 . . . . . 6  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. y  y  e.  ( 1st `  A ) )
74683adant3 935 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  Q. )
75 simp3 917 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  ( 1st `  A
) )
76 elprnql 6637 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7737, 76sylan 271 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
7836, 77sylan 271 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  y  e.  ( 1st `  A ) )  -> 
y  e.  Q. )
79783adant2 934 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  y  e.  Q. )
80 addcomnqg 6537 . . . . . . . . . . . 12  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  ( r  +Q  y
)  =  ( y  +Q  r ) )
8174, 79, 80syl2anc 397 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  =  ( y  +Q  r ) )
82 ltaddnq 6563 . . . . . . . . . . . . 13  |-  ( ( r  e.  Q.  /\  y  e.  Q. )  ->  r  <Q  ( r  +Q  y ) )
8374, 79, 82syl2anc 397 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  <Q  ( r  +Q  y
) )
84 prcunqu 6641 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
858, 84sylan 271 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
867, 85sylan 271 . . . . . . . . . . . . 13  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
( r  <Q  (
r  +Q  y )  ->  ( r  +Q  y )  e.  ( 2nd `  B ) ) )
87863adant3 935 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  <Q  ( r  +Q  y )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) ) )
8883, 87mpd 13 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  +Q  y )  e.  ( 2nd `  B
) )
8981, 88eqeltrrd 2131 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
y  +Q  r )  e.  ( 2nd `  B
) )
90 19.8a 1498 . . . . . . . . . 10  |-  ( ( y  e.  ( 1st `  A )  /\  (
y  +Q  r )  e.  ( 2nd `  B
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9175, 89, 90syl2anc 397 . . . . . . . . 9  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )
9274, 91jca 294 . . . . . . . 8  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  (
r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9352ltexprlemelu 6755 . . . . . . . 8  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
9492, 93sylibr 141 . . . . . . 7  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B )  /\  y  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  C
) )
95943expa 1115 . . . . . 6  |-  ( ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  /\  y  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  C ) )
9673, 95exlimddv 1794 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  -> 
r  e.  ( 2nd `  C ) )
97 19.8a 1498 . . . . 5  |-  ( ( r  e.  Q.  /\  r  e.  ( 2nd `  C ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
9868, 96, 97syl2anc 397 . . . 4  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r ( r  e. 
Q.  /\  r  e.  ( 2nd `  C ) ) )
99 df-rex 2329 . . . 4  |-  ( E. r  e.  Q.  r  e.  ( 2nd `  C
)  <->  E. r ( r  e.  Q.  /\  r  e.  ( 2nd `  C
) ) )
10098, 99sylibr 141 . . 3  |-  ( ( A  <P  B  /\  r  e.  ( 2nd `  B ) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10160, 61, 65, 100exlimdd 1768 . 2  |-  ( A 
<P  B  ->  E. r  e.  Q.  r  e.  ( 2nd `  C ) )
10259, 101jca 294 1  |-  ( A 
<P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C
)  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259   E.wex 1397    e. wcel 1409   E.wrex 2324   {crab 2327    C_ wss 2945   <.cop 3406   class class class wbr 3792   ` cfv 4930  (class class class)co 5540   1stc1st 5793   2ndc2nd 5794   Q.cnq 6436    +Q cplq 6438    <Q cltq 6441   P.cnp 6447    <P cltp 6451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-ltnqqs 6509  df-inp 6622  df-iltp 6626
This theorem is referenced by:  ltexprlempr  6764
  Copyright terms: Public domain W3C validator