ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqex Unicode version

Theorem ceqex 2694
Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
Assertion
Ref Expression
ceqex  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ceqex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 19.8a 1498 . . 3  |-  ( x  =  A  ->  E. x  x  =  A )
2 isset 2578 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
31, 2sylibr 141 . 2  |-  ( x  =  A  ->  A  e.  _V )
4 eqeq2 2065 . . . 4  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
54anbi1d 446 . . . . . 6  |-  ( y  =  A  ->  (
( x  =  y  /\  ph )  <->  ( x  =  A  /\  ph )
) )
65exbidv 1722 . . . . 5  |-  ( y  =  A  ->  ( E. x ( x  =  y  /\  ph )  <->  E. x ( x  =  A  /\  ph )
) )
76bibi2d 225 . . . 4  |-  ( y  =  A  ->  (
( ph  <->  E. x ( x  =  y  /\  ph ) )  <->  ( ph  <->  E. x ( x  =  A  /\  ph )
) ) )
84, 7imbi12d 227 . . 3  |-  ( y  =  A  ->  (
( x  =  y  ->  ( ph  <->  E. x
( x  =  y  /\  ph ) ) )  <->  ( x  =  A  ->  ( ph  <->  E. x ( x  =  A  /\  ph )
) ) ) )
9 19.8a 1498 . . . . 5  |-  ( ( x  =  y  /\  ph )  ->  E. x
( x  =  y  /\  ph ) )
109ex 112 . . . 4  |-  ( x  =  y  ->  ( ph  ->  E. x ( x  =  y  /\  ph ) ) )
11 vex 2577 . . . . . 6  |-  y  e. 
_V
1211alexeq 2693 . . . . 5  |-  ( A. x ( x  =  y  ->  ph )  <->  E. x
( x  =  y  /\  ph ) )
13 sp 1417 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
1413com12 30 . . . . 5  |-  ( x  =  y  ->  ( A. x ( x  =  y  ->  ph )  ->  ph ) )
1512, 14syl5bir 146 . . . 4  |-  ( x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  ph ) )
1610, 15impbid 124 . . 3  |-  ( x  =  y  ->  ( ph 
<->  E. x ( x  =  y  /\  ph ) ) )
178, 16vtoclg 2630 . 2  |-  ( A  e.  _V  ->  (
x  =  A  -> 
( ph  <->  E. x ( x  =  A  /\  ph ) ) ) )
183, 17mpcom 36 1  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576
This theorem is referenced by:  ceqsexg  2695  sbc6g  2811
  Copyright terms: Public domain W3C validator