ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptcom Unicode version

Theorem cnmptcom 12467
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptcom.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptcom.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptcom.6  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
Assertion
Ref Expression
cnmptcom  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
Distinct variable groups:    x, y, L   
x, X, y    ph, x, y    x, Y, y
Allowed substitution hints:    A( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmptcom
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptcom.3 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmptcom.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 txtopon 12431 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 408 . . . . . . . 8  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 cnmptcom.6 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
6 cntop2 12371 . . . . . . . . . 10  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  L  e.  Top )
8 toptopon2 12186 . . . . . . . . 9  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
97, 8sylib 121 . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 cnf2 12374 . . . . . . . 8  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L
) )  ->  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
114, 9, 5, 10syl3anc 1216 . . . . . . 7  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
12 eqid 2139 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1312fmpo 6099 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> U. L )
14 ralcom 2594 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
1513, 14bitr3i 185 . . . . . . 7  |-  ( ( x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L  <->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
1611, 15sylib 121 . . . . . 6  |-  ( ph  ->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
17 eqid 2139 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( y  e.  Y ,  x  e.  X  |->  A )
1817fmpo 6099 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  <->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X
) --> U. L )
1916, 18sylib 121 . . . . 5  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
2019ffnd 5273 . . . 4  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  Fn  ( Y  X.  X ) )
21 fnovim 5879 . . . 4  |-  ( ( y  e.  Y ,  x  e.  X  |->  A )  Fn  ( Y  X.  X )  -> 
( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
2220, 21syl 14 . . 3  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
23 nfcv 2281 . . . . . . 7  |-  F/_ y
z
24 nfcv 2281 . . . . . . 7  |-  F/_ x
z
25 nfcv 2281 . . . . . . 7  |-  F/_ x w
26 nfv 1508 . . . . . . . 8  |-  F/ y
ph
27 nfcv 2281 . . . . . . . . . 10  |-  F/_ y
x
28 nfmpo2 5839 . . . . . . . . . 10  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
2927, 28, 23nfov 5801 . . . . . . . . 9  |-  F/_ y
( x ( x  e.  X ,  y  e.  Y  |->  A ) z )
30 nfmpo1 5838 . . . . . . . . . 10  |-  F/_ y
( y  e.  Y ,  x  e.  X  |->  A )
3123, 30, 27nfov 5801 . . . . . . . . 9  |-  F/_ y
( z ( y  e.  Y ,  x  e.  X  |->  A ) x )
3229, 31nfeq 2289 . . . . . . . 8  |-  F/ y ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x )
3326, 32nfim 1551 . . . . . . 7  |-  F/ y ( ph  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
34 nfv 1508 . . . . . . . 8  |-  F/ x ph
35 nfmpo1 5838 . . . . . . . . . 10  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
3625, 35, 24nfov 5801 . . . . . . . . 9  |-  F/_ x
( w ( x  e.  X ,  y  e.  Y  |->  A ) z )
37 nfmpo2 5839 . . . . . . . . . 10  |-  F/_ x
( y  e.  Y ,  x  e.  X  |->  A )
3824, 37, 25nfov 5801 . . . . . . . . 9  |-  F/_ x
( z ( y  e.  Y ,  x  e.  X  |->  A ) w )
3936, 38nfeq 2289 . . . . . . . 8  |-  F/ x
( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w )
4034, 39nfim 1551 . . . . . . 7  |-  F/ x
( ph  ->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
41 oveq2 5782 . . . . . . . . 9  |-  ( y  =  z  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z ) )
42 oveq1 5781 . . . . . . . . 9  |-  ( y  =  z  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
4341, 42eqeq12d 2154 . . . . . . . 8  |-  ( y  =  z  ->  (
( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  <->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
4443imbi2d 229 . . . . . . 7  |-  ( y  =  z  ->  (
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  <-> 
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) ) )
45 oveq1 5781 . . . . . . . . 9  |-  ( x  =  w  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )
46 oveq2 5782 . . . . . . . . 9  |-  ( x  =  w  ->  (
z ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
4745, 46eqeq12d 2154 . . . . . . . 8  |-  ( x  =  w  ->  (
( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x )  <->  ( w ( x  e.  X , 
y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
4847imbi2d 229 . . . . . . 7  |-  ( x  =  w  ->  (
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  <-> 
( ph  ->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) ) )
49 rsp2 2482 . . . . . . . . 9  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  ->  (
( y  e.  Y  /\  x  e.  X
)  ->  A  e.  U. L ) )
5049, 16syl11 31 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( ph  ->  A  e.  U. L ) )
5112ovmpt4g 5893 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
52513com12 1185 . . . . . . . . . 10  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
5317ovmpt4g 5893 . . . . . . . . . 10  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
5452, 53eqtr4d 2175 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
55543expia 1183 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( A  e.  U. L  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
5650, 55syld 45 . . . . . . 7  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( ph  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
5723, 24, 25, 33, 40, 44, 48, 56vtocl2gaf 2753 . . . . . 6  |-  ( ( z  e.  Y  /\  w  e.  X )  ->  ( ph  ->  (
w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
5857com12 30 . . . . 5  |-  ( ph  ->  ( ( z  e.  Y  /\  w  e.  X )  ->  (
w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
59583impib 1179 . . . 4  |-  ( (
ph  /\  z  e.  Y  /\  w  e.  X
)  ->  ( w
( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
6059mpoeq3dva 5835 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
6122, 60eqtr4d 2175 . 2  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) ) )
622, 1cnmpt2nd 12458 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  w )  e.  ( ( K  tX  J
)  Cn  J ) )
632, 1cnmpt1st 12457 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  z )  e.  ( ( K  tX  J
)  Cn  K ) )
642, 1, 62, 63, 5cnmpt22f 12464 . 2  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )  e.  ( ( K  tX  J )  Cn  L
) )
6561, 64eqeltrd 2216 1  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   U.cuni 3736    X. cxp 4537    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   Topctop 12164  TopOnctopon 12177    Cn ccn 12354    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-tx 12422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator