ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2res Unicode version

Theorem cnmpt2res 12466
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2  |-  K  =  ( Jt  Y )
cnmpt1res.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt1res.5  |-  ( ph  ->  Y  C_  X )
cnmpt2res.7  |-  N  =  ( Mt  W )
cnmpt2res.8  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
cnmpt2res.9  |-  ( ph  ->  W  C_  Z )
cnmpt2res.10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
Assertion
Ref Expression
cnmpt2res  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Distinct variable groups:    x, y, W   
x, X, y    x, Y, y    x, Z, y
Allowed substitution hints:    ph( x, y)    A( x, y)    J( x, y)    K( x, y)    L( x, y)    M( x, y)    N( x, y)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
2 cnmpt1res.5 . . . . 5  |-  ( ph  ->  Y  C_  X )
3 cnmpt2res.9 . . . . 5  |-  ( ph  ->  W  C_  Z )
4 xpss12 4646 . . . . 5  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( Y  X.  W
)  C_  ( X  X.  Z ) )
52, 3, 4syl2anc 408 . . . 4  |-  ( ph  ->  ( Y  X.  W
)  C_  ( X  X.  Z ) )
6 cnmpt1res.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 cnmpt2res.8 . . . . . 6  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
8 txtopon 12431 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Z )
)  ->  ( J  tX  M )  e.  (TopOn `  ( X  X.  Z
) ) )
96, 7, 8syl2anc 408 . . . . 5  |-  ( ph  ->  ( J  tX  M
)  e.  (TopOn `  ( X  X.  Z
) ) )
10 toponuni 12182 . . . . 5  |-  ( ( J  tX  M )  e.  (TopOn `  ( X  X.  Z ) )  ->  ( X  X.  Z )  =  U. ( J  tX  M ) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( X  X.  Z
)  =  U. ( J  tX  M ) )
125, 11sseqtrd 3135 . . 3  |-  ( ph  ->  ( Y  X.  W
)  C_  U. ( J  tX  M ) )
13 eqid 2139 . . . 4  |-  U. ( J  tX  M )  = 
U. ( J  tX  M )
1413cnrest 12404 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L )  /\  ( Y  X.  W )  C_  U. ( J  tX  M ) )  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
151, 12, 14syl2anc 408 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
16 resmpo 5869 . . 3  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
172, 3, 16syl2anc 408 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
18 topontop 12181 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
196, 18syl 14 . . . . 5  |-  ( ph  ->  J  e.  Top )
20 topontop 12181 . . . . . 6  |-  ( M  e.  (TopOn `  Z
)  ->  M  e.  Top )
217, 20syl 14 . . . . 5  |-  ( ph  ->  M  e.  Top )
22 toponmax 12192 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
236, 22syl 14 . . . . . 6  |-  ( ph  ->  X  e.  J )
2423, 2ssexd 4068 . . . . 5  |-  ( ph  ->  Y  e.  _V )
25 toponmax 12192 . . . . . . 7  |-  ( M  e.  (TopOn `  Z
)  ->  Z  e.  M )
267, 25syl 14 . . . . . 6  |-  ( ph  ->  Z  e.  M )
2726, 3ssexd 4068 . . . . 5  |-  ( ph  ->  W  e.  _V )
28 txrest 12445 . . . . 5  |-  ( ( ( J  e.  Top  /\  M  e.  Top )  /\  ( Y  e.  _V  /\  W  e.  _V )
)  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y )  tX  ( Mt  W ) ) )
2919, 21, 24, 27, 28syl22anc 1217 . . . 4  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) ) )
30 cnmpt1res.2 . . . . 5  |-  K  =  ( Jt  Y )
31 cnmpt2res.7 . . . . 5  |-  N  =  ( Mt  W )
3230, 31oveq12i 5786 . . . 4  |-  ( K 
tX  N )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) )
3329, 32syl6eqr 2190 . . 3  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( K  tX  N
) )
3433oveq1d 5789 . 2  |-  ( ph  ->  ( ( ( J 
tX  M )t  ( Y  X.  W ) )  Cn  L )  =  ( ( K  tX  N )  Cn  L
) )
3515, 17, 343eltr3d 2222 1  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071   U.cuni 3736    X. cxp 4537    |` cres 4541   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   ↾t crest 12120   Topctop 12164  TopOnctopon 12177    Cn ccn 12354    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-rest 12122  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-tx 12422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator