ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m Unicode version

Theorem ecdmn0m 6471
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Distinct variable groups:    x, R    x, A

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2697 . 2  |-  ( A  e.  dom  R  ->  A  e.  _V )
2 ecexr 6434 . . 3  |-  ( x  e.  [ A ] R  ->  A  e.  _V )
32exlimiv 1577 . 2  |-  ( E. x  x  e.  [ A ] R  ->  A  e.  _V )
4 eldmg 4734 . . 3  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
5 vex 2689 . . . . 5  |-  x  e. 
_V
6 elecg 6467 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  _V )  ->  ( x  e.  [ A ] R  <->  A R x ) )
75, 6mpan 420 . . . 4  |-  ( A  e.  _V  ->  (
x  e.  [ A ] R  <->  A R x ) )
87exbidv 1797 . . 3  |-  ( A  e.  _V  ->  ( E. x  x  e.  [ A ] R  <->  E. x  A R x ) )
94, 8bitr4d 190 . 2  |-  ( A  e.  _V  ->  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R ) )
101, 3, 9pm5.21nii 693 1  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1468    e. wcel 1480   _Vcvv 2686   class class class wbr 3929   dom cdm 4539   [cec 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-ec 6431
This theorem is referenced by:  ereldm  6472  elqsn0m  6497  ecelqsdm  6499
  Copyright terms: Public domain W3C validator