ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3 Unicode version

Theorem elab3 2746
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.)
Hypotheses
Ref Expression
elab3.1  |-  ( ps 
->  A  e.  _V )
elab3.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elab3  |-  ( A  e.  { x  | 
ph }  <->  ps )
Distinct variable groups:    ps, x    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elab3
StepHypRef Expression
1 elab3.1 . 2  |-  ( ps 
->  A  e.  _V )
2 elab3.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32elab3g 2745 . 2  |-  ( ( ps  ->  A  e.  _V )  ->  ( A  e.  { x  | 
ph }  <->  ps )
)
41, 3ax-mp 7 1  |-  ( A  e.  { x  | 
ph }  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1285    e. wcel 1434   {cab 2068   _Vcvv 2602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604
This theorem is referenced by:  elrnmpt2  5645  isfi  6308  addnqprlemfl  6811  addnqprlemfu  6812  mulnqprlemfl  6827  mulnqprlemfu  6828
  Copyright terms: Public domain W3C validator