ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqord2 Unicode version

Theorem eqord2 8246
Description: A strictly decreasing real function on a subset of  RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord2.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
Assertion
Ref Expression
eqord2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y   
x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem eqord2
StepHypRef Expression
1 ltord.1 . . . 4  |-  ( x  =  y  ->  A  =  B )
21negeqd 7957 . . 3  |-  ( x  =  y  ->  -u A  =  -u B )
3 ltord.2 . . . 4  |-  ( x  =  C  ->  A  =  M )
43negeqd 7957 . . 3  |-  ( x  =  C  ->  -u A  =  -u M )
5 ltord.3 . . . 4  |-  ( x  =  D  ->  A  =  N )
65negeqd 7957 . . 3  |-  ( x  =  D  ->  -u A  =  -u N )
7 ltord.4 . . 3  |-  S  C_  RR
8 ltord.5 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
98renegcld 8142 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  -u A  e.  RR )
10 ltord2.6 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  B  <  A ) )
118ralrimiva 2505 . . . . . . 7  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
121eleq1d 2208 . . . . . . . 8  |-  ( x  =  y  ->  ( A  e.  RR  <->  B  e.  RR ) )
1312rspccva 2788 . . . . . . 7  |-  ( ( A. x  e.  S  A  e.  RR  /\  y  e.  S )  ->  B  e.  RR )
1411, 13sylan 281 . . . . . 6  |-  ( (
ph  /\  y  e.  S )  ->  B  e.  RR )
1514adantrl 469 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  B  e.  RR )
168adantrr 470 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A  e.  RR )
17 ltneg 8224 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  -u A  <  -u B
) )
1815, 16, 17syl2anc 408 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( B  <  A  <->  -u A  <  -u B
) )
1910, 18sylibd 148 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  -> 
-u A  <  -u B
) )
202, 4, 6, 7, 9, 19eqord1 8245 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <->  -u M  =  -u N
) )
213eleq1d 2208 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
2221rspccva 2788 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2311, 22sylan 281 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
2423adantrr 470 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  RR )
2524recnd 7794 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  M  e.  CC )
265eleq1d 2208 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
2726rspccva 2788 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
2811, 27sylan 281 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
2928adantrl 469 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  RR )
3029recnd 7794 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  ->  N  e.  CC )
3125, 30neg11ad 8069 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -u M  =  -u N 
<->  M  =  N ) )
3220, 31bitrd 187 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  <-> 
M  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416    C_ wss 3071   class class class wbr 3929   RRcr 7619    < clt 7800   -ucneg 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator