ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foov Unicode version

Theorem foov 5678
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    z, C    x, F, y, z
Allowed substitution hints:    C( x, y)

Proof of Theorem foov
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dffo3 5346 . 2  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. w  e.  ( A  X.  B ) z  =  ( F `  w
) ) )
2 fveq2 5209 . . . . . . 7  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5546 . . . . . . 7  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3syl6eqr 2132 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( x F y ) )
54eqeq2d 2093 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( F `  w
)  <->  z  =  ( x F y ) ) )
65rexxp 4508 . . . 4  |-  ( E. w  e.  ( A  X.  B ) z  =  ( F `  w )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
76ralbii 2373 . . 3  |-  ( A. z  e.  C  E. w  e.  ( A  X.  B ) z  =  ( F `  w
)  <->  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
87anbi2i 445 . 2  |-  ( ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. w  e.  ( A  X.  B
) z  =  ( F `  w ) )  <->  ( F :
( A  X.  B
) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
91, 8bitri 182 1  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1285   A.wral 2349   E.wrex 2350   <.cop 3409    X. cxp 4369   -->wf 4928   -onto->wfo 4930   ` cfv 4932  (class class class)co 5543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fo 4938  df-fv 4940  df-ov 5546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator