![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi2i | Unicode version |
Description: Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.32i 442 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: anbi12i 448 mpan10 458 an4 551 an42 552 anandir 556 dcim 818 19.27h 1493 19.27 1494 19.41 1617 sbcof2 1732 sbidm 1773 sb6 1808 3exdistr 1834 4exdistr 1835 2sb5 1901 2sb5rf 1907 sbel2x 1916 eu2 1986 euan 1998 sbmo 2001 mo4f 2002 eu4 2004 moanim 2016 2eu4 2035 clelab 2204 nonconne 2258 r2exf 2385 ceqsex3v 2642 ceqsex4v 2643 ceqsex8v 2645 reu2 2781 reu6 2782 reu4 2787 reu7 2788 2rmorex 2797 rmo3 2906 raldifb 3113 inass 3183 ssddif 3205 difin 3208 invdif 3213 indif 3214 indi 3218 difundi 3223 difindiss 3225 inssdif0im 3318 unipr 3623 uniun 3628 uniin 3629 iunin2 3749 iindif2m 3753 iinin2m 3754 unidif0 3949 mss 3989 eqvinop 4006 opcom 4013 opeqsn 4015 uniuni 4209 zfinf2 4338 elnn 4354 fconstmpt 4413 opeliunxp 4421 xpundi 4422 elvvv 4429 xpiindim 4501 elcnv2 4541 cnvuni 4549 dmuni 4573 opelres 4645 elima3 4705 imai 4711 imainss 4769 ssrnres 4793 cnvresima 4840 mptpreima 4844 coundir 4853 rnco 4857 coass 4869 relrelss 4874 dffun2 4942 dffun4 4943 dffun6f 4945 dffun4f 4948 dffun7 4958 dffun8 4959 dffun9 4960 svrelfun 4995 fncnv 4996 funcnvuni 4999 dfmpt3 5052 fintm 5106 fin 5107 dff12 5122 fores 5146 dff1o4 5165 eqfnfv3 5299 unpreima 5324 ffnfvf 5356 dff13f 5441 ffnov 5636 eqfnov 5638 foov 5678 opabex3d 5779 opabex3 5780 mpt2xopovel 5890 tpostpos 5913 dfsmo2 5936 tfr1onlemaccex 5997 tfrcllembxssdm 6005 tfrcllemaccex 6010 tfrcllemres 6011 tfrcldm 6012 erinxp 6246 xpassen 6374 distrnqg 6639 subhalfnqq 6666 enq0enq 6683 enq0sym 6684 enq0tr 6686 addnq0mo 6699 mulnq0mo 6700 distrnq0 6711 prarloc 6755 nqprrnd 6795 ltexprlemopl 6853 ltexprlemlol 6854 ltexprlemopu 6855 ltexprlemupu 6856 ltexprlemdisj 6858 ltexprlemloc 6859 recexprlemdisj 6882 caucvgprprlemell 6937 caucvgprprlemelu 6938 addsrmo 6982 mulsrmo 6983 opelreal 7058 axcaucvglemres 7127 elnnz 8442 elznn0nn 8446 zltlen 8507 suprzclex 8526 peano2uz2 8535 peano5uzti 8536 qltlen 8806 elfzuzb 9115 4fvwrd4 9227 fzind2 9325 cvg1nlemres 10009 rexfiuz 10013 ndvdssub 10474 isprm2 10643 isprm4 10645 |
Copyright terms: Public domain | W3C validator |