ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnanr Unicode version

Theorem intnanr 873
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
Hypothesis
Ref Expression
intnan.1  |-  -.  ph
Assertion
Ref Expression
intnanr  |-  -.  ( ph  /\  ps )

Proof of Theorem intnanr
StepHypRef Expression
1 intnan.1 . 2  |-  -.  ph
2 simpl 107 . 2  |-  ( (
ph  /\  ps )  ->  ph )
31, 2mto 621 1  |-  -.  ( ph  /\  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-in1 577  ax-in2 578
This theorem is referenced by:  rab0  3280  co02  4864  frec0g  6046  xrltnr  8931  pnfnlt  8938  nltmnf  8939
  Copyright terms: Public domain W3C validator