Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuniin Unicode version

Theorem iuniin 3695
 Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()   (,)

Proof of Theorem iuniin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.12 2439 . . . 4
2 vex 2577 . . . . . 6
3 eliin 3690 . . . . . 6
42, 3ax-mp 7 . . . . 5
54rexbii 2348 . . . 4
6 eliun 3689 . . . . 5
76ralbii 2347 . . . 4
81, 5, 73imtr4i 194 . . 3
9 eliun 3689 . . 3
10 eliin 3690 . . . 4
112, 10ax-mp 7 . . 3
128, 9, 113imtr4i 194 . 2
1312ssriv 2977 1
 Colors of variables: wff set class Syntax hints:   wb 102   wcel 1409  wral 2323  wrex 2324  cvv 2574   wss 2945  ciun 3685  ciin 3686 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-in 2952  df-ss 2959  df-iun 3687  df-iin 3688 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator