![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imtr4i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imtr4.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3imtr4.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | sylibr 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: dcn 780 dcan 876 xordc1 1325 hbxfrbi 1402 nfalt 1511 19.29r 1553 19.31r 1612 sbimi 1688 spsbbi 1766 sbi2v 1814 euan 1998 2exeu 2034 ralimi2 2424 reximi2 2458 r19.28av 2494 r19.29r 2496 elex 2611 rmoan 2791 rmoimi2 2794 sseq2 3022 rabss2 3078 unssdif 3206 inssdif 3207 unssin 3210 inssun 3211 rabn0r 3278 undif4 3313 ssdif0im 3315 inssdif0im 3318 ssundifim 3333 ralf0 3352 prmg 3519 difprsnss 3532 snsspw 3564 pwprss 3605 pwtpss 3606 uniin 3629 intss 3665 iuniin 3696 iuneq1 3699 iuneq2 3702 iundif2ss 3751 iinuniss 3766 iunpwss 3772 intexrabim 3936 exss 3990 pwunss 4046 soeq2 4079 ordunisuc2r 4266 peano5 4347 reliin 4487 coeq1 4521 coeq2 4522 cnveq 4537 dmeq 4563 dmin 4571 dmcoss 4629 rncoeq 4633 resiexg 4683 dminss 4768 imainss 4769 dfco2a 4851 euiotaex 4913 fununi 4998 fof 5137 f1ocnv 5170 rexrnmpt 5342 isocnv 5482 isotr 5487 oprabid 5568 dmtpos 5905 tposfn 5922 smores 5941 eqer 6204 enssdom 6309 fiprc 6360 ltexprlemlol 6854 ltexprlemupu 6856 recexgt0 7747 peano2uz2 8535 eluzp1p1 8725 peano2uz 8752 zq 8792 ubmelfzo 9286 frecuzrdgtcl 9494 frecuzrdgfunlem 9501 expclzaplem 9597 sizefiv01gt1 9806 qredeu 10623 bj-indint 10884 |
Copyright terms: Public domain | W3C validator |