ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccl Unicode version

Theorem limccl 12800
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl  |-  ( F lim
CC  B )  C_  CC

Proof of Theorem limccl
Dummy variables  d  e  f  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  ( F lim CC  B
) )
2 df-limced 12797 . . . . . 6  |- lim CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  e.  CC  |  ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) } )
32elmpocl1 5969 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  F  e.  ( CC  ^pm  CC ) )
4 limcrcl 12799 . . . . . 6  |-  ( w  e.  ( F lim CC  B )  ->  ( F : dom  F --> CC  /\  dom  F  C_  CC  /\  B  e.  CC ) )
54simp3d 995 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  B  e.  CC )
6 cnex 7747 . . . . . . 7  |-  CC  e.  _V
76rabex 4072 . . . . . 6  |-  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V
87a1i 9 . . . . 5  |-  ( w  e.  ( F lim CC  B )  ->  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V )
9 simpl 108 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  f  =  F )
109dmeqd 4741 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  dom  f  =  dom  F )
119, 10feq12d 5262 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( f : dom  f
--> CC  <->  F : dom  F --> CC ) )
1210sseq1d 3126 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( dom  f  C_  CC 
<->  dom  F  C_  CC ) )
1311, 12anbi12d 464 . . . . . . . 8  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( f : dom  f --> CC  /\  dom  f  C_  CC )  <-> 
( F : dom  F --> CC  /\  dom  F  C_  CC ) ) )
14 simpr 109 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  x  =  B )
1514eleq1d 2208 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( x  e.  CC  <->  B  e.  CC ) )
1614breq2d 3941 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( z #  x  <->  z #  B
) )
1714oveq2d 5790 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  F  /\  x  =  B )  ->  ( z  -  x
)  =  ( z  -  B ) )
1817fveq2d 5425 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  x  =  B )  ->  ( abs `  (
z  -  x ) )  =  ( abs `  ( z  -  B
) ) )
1918breq1d 3939 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( abs `  (
z  -  x ) )  <  d  <->  ( abs `  ( z  -  B
) )  <  d
) )
2016, 19anbi12d 464 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( z #  x  /\  ( abs `  (
z  -  x ) )  <  d )  <-> 
( z #  B  /\  ( abs `  ( z  -  B ) )  <  d ) ) )
219fveq1d 5423 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  x  =  B )  ->  ( f `  z
)  =  ( F `
 z ) )
2221fvoveq1d 5796 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  x  =  B )  ->  ( abs `  (
( f `  z
)  -  y ) )  =  ( abs `  ( ( F `  z )  -  y
) ) )
2322breq1d 3939 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( abs `  (
( f `  z
)  -  y ) )  <  e  <->  ( abs `  ( ( F `  z )  -  y
) )  <  e
) )
2420, 23imbi12d 233 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
)  <->  ( ( z #  B  /\  ( abs `  ( z  -  B
) )  <  d
)  ->  ( abs `  ( ( F `  z )  -  y
) )  <  e
) ) )
2510, 24raleqbidv 2638 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  x  =  B )  ->  ( A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e )  <->  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) )
2625rexbidv 2438 . . . . . . . . . 10  |-  ( ( f  =  F  /\  x  =  B )  ->  ( E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
)  <->  E. d  e.  RR+  A. z  e.  dom  F
( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  y ) )  <  e ) ) )
2726ralbidv 2437 . . . . . . . . 9  |-  ( ( f  =  F  /\  x  =  B )  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f
( ( z #  x  /\  ( abs `  (
z  -  x ) )  <  d )  ->  ( abs `  (
( f `  z
)  -  y ) )  <  e )  <->  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) )
2815, 27anbi12d 464 . . . . . . . 8  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  f ( ( z #  x  /\  ( abs `  ( z  -  x
) )  <  d
)  ->  ( abs `  ( ( f `  z )  -  y
) )  <  e
) )  <->  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  (
z  -  B ) )  <  d )  ->  ( abs `  (
( F `  z
)  -  y ) )  <  e ) ) ) )
2913, 28anbi12d 464 . . . . . . 7  |-  ( ( f  =  F  /\  x  =  B )  ->  ( ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) )  <-> 
( ( F : dom  F --> CC  /\  dom  F 
C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) ) )
3029rabbidv 2675 . . . . . 6  |-  ( ( f  =  F  /\  x  =  B )  ->  { y  e.  CC  |  ( ( f : dom  f --> CC 
/\  dom  f  C_  CC )  /\  (
x  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  f ( ( z #  x  /\  ( abs `  ( z  -  x ) )  < 
d )  ->  ( abs `  ( ( f `
 z )  -  y ) )  < 
e ) ) ) }  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
3130, 2ovmpoga 5900 . . . . 5  |-  ( ( F  e.  ( CC 
^pm  CC )  /\  B  e.  CC  /\  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  e.  _V )  ->  ( F lim CC  B
)  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
323, 5, 8, 31syl3anc 1216 . . . 4  |-  ( w  e.  ( F lim CC  B )  ->  ( F lim CC  B )  =  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
331, 32eleqtrd 2218 . . 3  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\ 
A. e  e.  RR+  E. d  e.  RR+  A. z  e.  dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) } )
34 elrabi 2837 . . 3  |-  ( w  e.  { y  e.  CC  |  ( ( F : dom  F --> CC  /\  dom  F  C_  CC )  /\  ( B  e.  CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. z  e. 
dom  F ( ( z #  B  /\  ( abs `  ( z  -  B ) )  < 
d )  ->  ( abs `  ( ( F `
 z )  -  y ) )  < 
e ) ) ) }  ->  w  e.  CC )
3533, 34syl 14 . 2  |-  ( w  e.  ( F lim CC  B )  ->  w  e.  CC )
3635ssriv 3101 1  |-  ( F lim
CC  B )  C_  CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071   class class class wbr 3929   dom cdm 4539   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^pm cpm 6543   CCcc 7621    < clt 7803    - cmin 7936   # cap 8346   RR+crp 9444   abscabs 10772   lim CC climc 12795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pm 6545  df-limced 12797
This theorem is referenced by:  reldvg  12820  dvfvalap  12822  dvcl  12824
  Copyright terms: Public domain W3C validator