![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neneqad | Unicode version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2267. One-way deduction form of df-ne 2247. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
neneqad.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
neneqad |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneqad.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con2i 590 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | necon2ai 2300 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 |
This theorem depends on definitions: df-bi 115 df-ne 2247 |
This theorem is referenced by: ne0i 3264 nsuceq0g 4181 fidifsnen 6405 nqnq0pi 6690 xrlttri3 8948 expival 9575 |
Copyright terms: Public domain | W3C validator |