ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.32rd Unicode version

Theorem pm5.32rd 439
Description: Distribution of implication over biconditional (deduction rule). (Contributed by NM, 25-Dec-2004.)
Hypothesis
Ref Expression
pm5.32d.1  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
Assertion
Ref Expression
pm5.32rd  |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ps ) ) )

Proof of Theorem pm5.32rd
StepHypRef Expression
1 pm5.32d.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
21pm5.32d 438 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  <->  ( ps  /\  th ) ) )
3 ancom 262 . 2  |-  ( ( ch  /\  ps )  <->  ( ps  /\  ch )
)
4 ancom 262 . 2  |-  ( ( th  /\  ps )  <->  ( ps  /\  th )
)
52, 3, 43bitr4g 221 1  |-  ( ph  ->  ( ( ch  /\  ps )  <->  ( th  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  anbi1d  453  pm5.71dc  903  1idprl  6831  1idpru  6832
  Copyright terms: Public domain W3C validator