ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2 Unicode version

Theorem preqr2 3568
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
preqr2.1  |-  A  e. 
_V
preqr2.2  |-  B  e. 
_V
Assertion
Ref Expression
preqr2  |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 3474 . . 3  |-  { C ,  A }  =  { A ,  C }
2 prcom 3474 . . 3  |-  { C ,  B }  =  { B ,  C }
31, 2eqeq12i 2069 . 2  |-  ( { C ,  A }  =  { C ,  B } 
<->  { A ,  C }  =  { B ,  C } )
4 preqr2.1 . . 3  |-  A  e. 
_V
5 preqr2.2 . . 3  |-  B  e. 
_V
64, 5preqr1 3567 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
73, 6sylbi 118 1  |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1259    e. wcel 1409   _Vcvv 2574   {cpr 3404
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410
This theorem is referenced by:  preq12b  3569  opth  4002  opthreg  4308
  Copyright terms: Public domain W3C validator