ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmetge0 Unicode version

Theorem psmetge0 12500
Description: The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
Assertion
Ref Expression
psmetge0  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )

Proof of Theorem psmetge0
StepHypRef Expression
1 0xr 7812 . . . 4  |-  0  e.  RR*
2 xaddid1 9645 . . . 4  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
31, 2ax-mp 5 . . 3  |-  ( 0 +e 0 )  =  0
4 psmet0 12496 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  X )  ->  ( B D B )  =  0 )
543adant2 1000 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  =  0 )
6 simp1 981 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  D  e.  (PsMet `  X )
)
7 simp2 982 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
8 simp3 983 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
9 psmettri2 12497 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  B  e.  X )
)  ->  ( B D B )  <_  (
( A D B ) +e ( A D B ) ) )
106, 7, 8, 8, 9syl13anc 1218 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( B D B )  <_ 
( ( A D B ) +e
( A D B ) ) )
115, 10eqbrtrrd 3952 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( ( A D B ) +e
( A D B ) ) )
123, 11eqbrtrid 3963 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) )
13 psmetcl 12495 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e. 
RR* )
14 xleaddadd 9670 . . 3  |-  ( ( 0  e.  RR*  /\  ( A D B )  e. 
RR* )  ->  (
0  <_  ( A D B )  <->  ( 0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) ) )
151, 13, 14sylancr 410 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  (
0  <_  ( A D B )  <->  ( 0 +e 0 )  <_  ( ( A D B ) +e ( A D B ) ) ) )
1612, 15mpbird 166 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   0cc0 7620   RR*cxr 7799    <_ cle 7801   +ecxad 9557  PsMetcpsmet 12148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xadd 9560  df-psmet 12156
This theorem is referenced by:  psmetxrge0  12501  psmetlecl  12503  distspace  12504  xblpnfps  12567  xblss2ps  12573
  Copyright terms: Public domain W3C validator