ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescom Unicode version

Theorem rescom 4664
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
rescom  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )

Proof of Theorem rescom
StepHypRef Expression
1 incom 3157 . . 3  |-  ( B  i^i  C )  =  ( C  i^i  B
)
21reseq2i 4637 . 2  |-  ( A  |`  ( B  i^i  C
) )  =  ( A  |`  ( C  i^i  B ) )
3 resres 4652 . 2  |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )
4 resres 4652 . 2  |-  ( ( A  |`  C )  |`  B )  =  ( A  |`  ( C  i^i  B ) )
52, 3, 43eqtr4i 2086 1  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1259    i^i cin 2944    |` cres 4375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-opab 3847  df-xp 4379  df-rel 4380  df-res 4385
This theorem is referenced by:  resabs2  4669
  Copyright terms: Public domain W3C validator