ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmptf Unicode version

Theorem resmptf 4869
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a  |-  F/_ x A
resmptf.b  |-  F/_ x B
Assertion
Ref Expression
resmptf  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )

Proof of Theorem resmptf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 resmpt 4867 . 2  |-  ( B 
C_  A  ->  (
( y  e.  A  |-> 
[_ y  /  x ]_ C )  |`  B )  =  ( y  e.  B  |->  [_ y  /  x ]_ C ) )
2 resmptf.a . . . 4  |-  F/_ x A
3 nfcv 2281 . . . 4  |-  F/_ y A
4 nfcv 2281 . . . 4  |-  F/_ y C
5 nfcsb1v 3035 . . . 4  |-  F/_ x [_ y  /  x ]_ C
6 csbeq1a 3012 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
72, 3, 4, 5, 6cbvmptf 4022 . . 3  |-  ( x  e.  A  |->  C )  =  ( y  e.  A  |->  [_ y  /  x ]_ C )
87reseq1i 4815 . 2  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( ( y  e.  A  |->  [_ y  /  x ]_ C )  |`  B )
9 resmptf.b . . 3  |-  F/_ x B
10 nfcv 2281 . . 3  |-  F/_ y B
119, 10, 4, 5, 6cbvmptf 4022 . 2  |-  ( x  e.  B  |->  C )  =  ( y  e.  B  |->  [_ y  /  x ]_ C )
121, 8, 113eqtr4g 2197 1  |-  ( B 
C_  A  ->  (
( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331   F/_wnfc 2268   [_csb 3003    C_ wss 3071    |-> cmpt 3989    |` cres 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-mpt 3991  df-xp 4545  df-rel 4546  df-res 4551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator