Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsn Unicode version

Theorem rexsn 3455
 Description: Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ralsn.1
ralsn.2
Assertion
Ref Expression
rexsn
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rexsn
StepHypRef Expression
1 ralsn.1 . 2
2 ralsn.2 . . 3
32rexsng 3452 . 2
41, 3ax-mp 7 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285   wcel 1434  wrex 2354  cvv 2610  csn 3416 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-rex 2359  df-v 2612  df-sbc 2825  df-sn 3422 This theorem is referenced by:  elsnres  4695  snec  6254  elreal  7111
 Copyright terms: Public domain W3C validator