Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbanv Unicode version

Theorem sbanv 1811
 Description: Version of sban 1871 where and are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.)
Assertion
Ref Expression
sbanv
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem sbanv
StepHypRef Expression
1 sb6 1808 . 2
2 sb6 1808 . . . 4
3 sb6 1808 . . . 4
42, 3anbi12i 448 . . 3
5 19.26 1411 . . 3
6 pm4.76 569 . . . 4
76albii 1400 . . 3
84, 5, 73bitr2i 206 . 2
91, 8bitr4i 185 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103  wal 1283  wsb 1686 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468 This theorem depends on definitions:  df-bi 115  df-sb 1687 This theorem is referenced by:  sban  1871
 Copyright terms: Public domain W3C validator