![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbsbc | Unicode version |
Description: Show that df-sb 1687 and df-sbc 2817 are equivalent when the class term ![]() |
Ref | Expression |
---|---|
sbsbc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2082 |
. 2
![]() ![]() ![]() ![]() | |
2 | dfsbcq2 2819 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-clab 2069 df-cleq 2075 df-clel 2078 df-sbc 2817 |
This theorem is referenced by: spsbc 2827 sbcid 2831 sbcco 2837 sbcco2 2838 sbcie2g 2848 eqsbc3 2854 sbcralt 2891 sbcrext 2892 sbnfc2 2963 csbabg 2964 cbvralcsf 2965 cbvrexcsf 2966 cbvreucsf 2967 cbvrabcsf 2968 isarep1 5016 zsupcllemstep 10485 bezoutlemmain 10531 bdsbc 10807 |
Copyright terms: Public domain | W3C validator |