Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sumdc2 Unicode version

Theorem sumdc2 13006
Description: Alternate proof of sumdc 11127, without disjoint variable condition on  N ,  x (longer because the statement is taylored to the proof sumdc 11127). (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
sumdc2.m  |-  ( ph  ->  M  e.  ZZ )
sumdc2.ss  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
sumdc2.dc  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
sumdc2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
sumdc2  |-  ( ph  -> DECID  N  e.  A )
Distinct variable groups:    x, M    x, A
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem sumdc2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumdc2.ss . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2 sumdc2.dc . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
3 eleq1 2202 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43dcbid 823 . . . . . . 7  |-  ( x  =  y  ->  (DECID  x  e.  A  <-> DECID  y  e.  A )
)
54rspccv 2786 . . . . . 6  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> 
( y  e.  (
ZZ>= `  M )  -> DECID  y  e.  A ) )
6 exmiddc 821 . . . . . 6  |-  (DECID  y  e.  A  ->  ( y  e.  A  \/  -.  y  e.  A )
)
75, 6syl6 33 . . . . 5  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> 
( y  e.  (
ZZ>= `  M )  -> 
( y  e.  A  \/  -.  y  e.  A
) ) )
82, 7syl 14 . . . 4  |-  ( ph  ->  ( y  e.  (
ZZ>= `  M )  -> 
( y  e.  A  \/  -.  y  e.  A
) ) )
98decidr 13003 . . 3  |-  ( ph  ->  A DECIDin  (
ZZ>= `  M ) )
10 sumdc2.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
11 uzdcinzz 13005 . . . 4  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M ) DECIDin  ZZ )
1210, 11syl 14 . . 3  |-  ( ph  ->  ( ZZ>= `  M ) DECIDin  ZZ )
131, 9, 12decidin 13004 . 2  |-  ( ph  ->  A DECIDin  ZZ )
14 sumdc2.n . 2  |-  ( ph  ->  N  e.  ZZ )
15 df-dcin 13001 . . 3  |-  ( A DECIDin  ZZ  <->  A. z  e.  ZZ DECID  z  e.  A )
16 nfv 1508 . . . . . 6  |-  F/ zDECID  N  e.  A
1716rspct 2782 . . . . 5  |-  ( A. z ( z  =  N  ->  (DECID  z  e.  A 
<-> DECID  N  e.  A ) )  ->  ( N  e.  ZZ  ->  ( A. z  e.  ZZ DECID  z  e.  A  -> DECID  N  e.  A ) ) )
18 eleq1 2202 . . . . . 6  |-  ( z  =  N  ->  (
z  e.  A  <->  N  e.  A ) )
1918dcbid 823 . . . . 5  |-  ( z  =  N  ->  (DECID  z  e.  A  <-> DECID  N  e.  A )
)
2017, 19mpg 1427 . . . 4  |-  ( N  e.  ZZ  ->  ( A. z  e.  ZZ DECID  z  e.  A  -> DECID  N  e.  A
) )
2120com12 30 . . 3  |-  ( A. z  e.  ZZ DECID  z  e.  A  ->  ( N  e.  ZZ  -> DECID  N  e.  A ) )
2215, 21sylbi 120 . 2  |-  ( A DECIDin  ZZ  ->  ( N  e.  ZZ  -> DECID  N  e.  A ) )
2313, 14, 22sylc 62 1  |-  ( ph  -> DECID  N  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416    C_ wss 3071   ` cfv 5123   ZZcz 9054   ZZ>=cuz 9326   DECIDin wdcin 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-dcin 13001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator