ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12f Unicode version

Theorem tz6.12f 5234
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1  |-  F/_ y F
Assertion
Ref Expression
tz6.12f  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Distinct variable group:    y, A
Allowed substitution hint:    F( y)

Proof of Theorem tz6.12f
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opeq2 3579 . . . . 5  |-  ( z  =  y  ->  <. A , 
z >.  =  <. A , 
y >. )
21eleq1d 2148 . . . 4  |-  ( z  =  y  ->  ( <. A ,  z >.  e.  F  <->  <. A ,  y
>.  e.  F ) )
3 tz6.12f.1 . . . . . . 7  |-  F/_ y F
43nfel2 2232 . . . . . 6  |-  F/ y
<. A ,  z >.  e.  F
5 nfv 1462 . . . . . 6  |-  F/ z
<. A ,  y >.  e.  F
64, 5, 2cbveu 1966 . . . . 5  |-  ( E! z <. A ,  z
>.  e.  F  <->  E! y <. A ,  y >.  e.  F )
76a1i 9 . . . 4  |-  ( z  =  y  ->  ( E! z <. A ,  z
>.  e.  F  <->  E! y <. A ,  y >.  e.  F ) )
82, 7anbi12d 457 . . 3  |-  ( z  =  y  ->  (
( <. A ,  z
>.  e.  F  /\  E! z <. A ,  z
>.  e.  F )  <->  ( <. A ,  y >.  e.  F  /\  E! y <. A , 
y >.  e.  F ) ) )
9 eqeq2 2091 . . 3  |-  ( z  =  y  ->  (
( F `  A
)  =  z  <->  ( F `  A )  =  y ) )
108, 9imbi12d 232 . 2  |-  ( z  =  y  ->  (
( ( <. A , 
z >.  e.  F  /\  E! z <. A ,  z
>.  e.  F )  -> 
( F `  A
)  =  z )  <-> 
( ( <. A , 
y >.  e.  F  /\  E! y <. A ,  y
>.  e.  F )  -> 
( F `  A
)  =  y ) ) )
11 tz6.12 5233 . 2  |-  ( (
<. A ,  z >.  e.  F  /\  E! z
<. A ,  z >.  e.  F )  ->  ( F `  A )  =  z )
1210, 11chvarv 1854 1  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   E!weu 1942   F/_wnfc 2207   <.cop 3409   ` cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-iota 4897  df-fv 4940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator