Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniabio Unicode version

Theorem uniabio 4905
 Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2167 . . . . 5
21biimpi 117 . . . 4
3 df-sn 3409 . . . 4
42, 3syl6eqr 2106 . . 3
54unieqd 3619 . 2
6 vex 2577 . . 3
76unisn 3624 . 2
85, 7syl6eq 2104 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 102  wal 1257   wceq 1259  cab 2042  csn 3403  cuni 3608 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-uni 3609 This theorem is referenced by:  iotaval  4906  iotauni  4907
 Copyright terms: Public domain W3C validator