HomeHome Intuitionistic Logic Explorer
Theorem List (p. 51 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5001-5100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrescnvcnv 5001 The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( `' `' A  |`  B )  =  ( A  |`  B )
 
Theoremcnvcnvres 5002 The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
 |-  `' `' ( A  |`  B )  =  ( `' `' A  |`  B )
 
Theoremimacnvcnv 5003 The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
 |-  ( `' `' A " B )  =  ( A " B )
 
Theoremdmsnm 5004* The domain of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
 |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
 dom  { A } )
 
Theoremrnsnm 5005* The range of a singleton is inhabited iff the singleton argument is an ordered pair. (Contributed by Jim Kingdon, 15-Dec-2018.)
 |-  ( A  e.  ( _V  X.  _V )  <->  E. x  x  e. 
 ran  { A } )
 
Theoremdmsn0 5006 The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
 |- 
 dom  { (/) }  =  (/)
 
Theoremcnvsn0 5007 The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  `' { (/) }  =  (/)
 
Theoremdmsn0el 5008 The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
 |-  ( (/)  e.  A  ->  dom  { A }  =  (/) )
 
Theoremrelsn2m 5009* A singleton is a relation iff it has an inhabited domain. (Contributed by Jim Kingdon, 16-Dec-2018.)
 |-  A  e.  _V   =>    |-  ( Rel  { A } 
 <-> 
 E. x  x  e. 
 dom  { A } )
 
Theoremdmsnopg 5010 The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( B  e.  V  ->  dom  { <. A ,  B >. }  =  { A } )
 
Theoremdmpropg 5011 The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( B  e.  V  /\  D  e.  W )  ->  dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
 )
 
Theoremdmsnop 5012 The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  B  e.  _V   =>    |-  dom  { <. A ,  B >. }  =  { A }
 
Theoremdmprop 5013 The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
 |-  B  e.  _V   &    |-  D  e.  _V   =>    |- 
 dom  { <. A ,  B >. ,  <. C ,  D >. }  =  { A ,  C }
 
Theoremdmtpop 5014 The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
 |-  B  e.  _V   &    |-  D  e.  _V   &    |-  F  e.  _V   =>    |-  dom  {
 <. A ,  B >. , 
 <. C ,  D >. , 
 <. E ,  F >. }  =  { A ,  C ,  E }
 
Theoremcnvcnvsn 5015 Double converse of a singleton of an ordered pair. (Unlike cnvsn 5021, this does not need any sethood assumptions on  A and  B.) (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }
 
Theoremdmsnsnsng 5016 The domain of the singleton of the singleton of a singleton. (Contributed by Jim Kingdon, 16-Dec-2018.)
 |-  ( A  e.  _V  ->  dom  { { { A } } }  =  { A } )
 
Theoremrnsnopg 5017 The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  ( A  e.  V  ->  ran  { <. A ,  B >. }  =  { B } )
 
Theoremrnpropg 5018 The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  { <. A ,  C >. ,  <. B ,  D >. }  =  { C ,  D }
 )
 
Theoremrnsnop 5019 The range of a singleton of an ordered pair is the singleton of the second member. (Contributed by NM, 24-Jul-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   =>    |-  ran  { <. A ,  B >. }  =  { B }
 
Theoremop1sta 5020 Extract the first member of an ordered pair. (See op2nda 5023 to extract the second member and op1stb 4399 for an alternate version.) (Contributed by Raph Levien, 4-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 U. dom  { <. A ,  B >. }  =  A
 
Theoremcnvsn 5021 Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
 
Theoremop2ndb 5022 Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4399 to extract the first member and op2nda 5023 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 |^| |^| |^| `' { <. A ,  B >. }  =  B
 
Theoremop2nda 5023 Extract the second member of an ordered pair. (See op1sta 5020 to extract the first member and op2ndb 5022 for an alternate version.) (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 U. ran  { <. A ,  B >. }  =  B
 
Theoremcnvsng 5024 Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
 
Theoremopswapg 5025 Swap the members of an ordered pair. (Contributed by Jim Kingdon, 16-Dec-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
 
Theoremelxp4 5026 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 5027. (Contributed by NM, 17-Feb-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. U. dom  { A } ,  U. ran  { A } >.  /\  ( U. dom  { A }  e.  B  /\  U. ran  { A }  e.  C )
 ) )
 
Theoremelxp5 5027 Membership in a cross product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 5026 when the double intersection does not create class existence problems (caused by int0 3785). (Contributed by NM, 1-Aug-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. |^| |^| A ,  U. ran  { A } >.  /\  ( |^| |^| A  e.  B  /\  U. ran  { A }  e.  C ) ) )
 
Theoremcnvresima 5028 An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.)
 |-  ( `' ( F  |`  A ) " B )  =  ( ( `' F " B )  i^i  A )
 
Theoremresdm2 5029 A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
 |-  ( A  |`  dom  A )  =  `' `' A
 
Theoremresdmres 5030 Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
 |-  ( A  |`  dom  ( A  |`  B ) )  =  ( A  |`  B )
 
Theoremimadmres 5031 The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
 |-  ( A " dom  ( A  |`  B ) )  =  ( A
 " B )
 
Theoremmptpreima 5032* The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( `' F " C )  =  { x  e.  A  |  B  e.  C }
 
Theoremmptiniseg 5033* Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( C  e.  V  ->  ( `' F " { C } )  =  { x  e.  A  |  B  =  C } )
 
Theoremdmmpt 5034 The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  dom 
 F  =  { x  e.  A  |  B  e.  _V
 }
 
Theoremdmmptss 5035* The domain of a mapping is a subset of its base class. (Contributed by Scott Fenton, 17-Jun-2013.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  dom 
 F  C_  A
 
Theoremdmmptg 5036* The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.)
 |-  ( A. x  e.  A  B  e.  V  ->  dom  ( x  e.  A  |->  B )  =  A )
 
Theoremrelco 5037 A composition is a relation. Exercise 24 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.)
 |- 
 Rel  ( A  o.  B )
 
Theoremdfco2 5038* Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
 |-  ( A  o.  B )  =  U_ x  e. 
 _V  ( ( `' B " { x } )  X.  ( A " { x }
 ) )
 
Theoremdfco2a 5039* Generalization of dfco2 5038, where  C can have any value between  dom  A  i^i  ran 
B and  _V. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( dom  A  i^i  ran  B )  C_  C  ->  ( A  o.  B )  =  U_ x  e.  C  ( ( `' B " { x } )  X.  ( A " { x }
 ) ) )
 
Theoremcoundi 5040 Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  o.  ( B  u.  C ) )  =  ( ( A  o.  B )  u.  ( A  o.  C ) )
 
Theoremcoundir 5041 Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  u.  B )  o.  C )  =  ( ( A  o.  C )  u.  ( B  o.  C ) )
 
Theoremcores 5042 Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ran  B  C_  C  ->  ( ( A  |`  C )  o.  B )  =  ( A  o.  B ) )
 
Theoremresco 5043 Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
 |-  ( ( A  o.  B )  |`  C )  =  ( A  o.  ( B  |`  C ) )
 
Theoremimaco 5044 Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.)
 |-  ( ( A  o.  B ) " C )  =  ( A " ( B " C ) )
 
Theoremrnco 5045 The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
 |- 
 ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
 
Theoremrnco2 5046 The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.)
 |- 
 ran  ( A  o.  B )  =  ( A " ran  B )
 
Theoremdmco 5047 The domain of a composition. Exercise 27 of [Enderton] p. 53. (Contributed by NM, 4-Feb-2004.)
 |- 
 dom  ( A  o.  B )  =  ( `' B " dom  A )
 
Theoremcoiun 5048* Composition with an indexed union. (Contributed by NM, 21-Dec-2008.)
 |-  ( A  o.  U_ x  e.  C  B )  =  U_ x  e.  C  ( A  o.  B )
 
Theoremcocnvcnv1 5049 A composition is not affected by a double converse of its first argument. (Contributed by NM, 8-Oct-2007.)
 |-  ( `' `' A  o.  B )  =  ( A  o.  B )
 
Theoremcocnvcnv2 5050 A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.)
 |-  ( A  o.  `' `' B )  =  ( A  o.  B )
 
Theoremcores2 5051 Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
 |-  ( dom  A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )
 
Theoremco02 5052 Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
 |-  ( A  o.  (/) )  =  (/)
 
Theoremco01 5053 Composition with the empty set. (Contributed by NM, 24-Apr-2004.)
 |-  ( (/)  o.  A )  =  (/)
 
Theoremcoi1 5054 Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
 |-  ( Rel  A  ->  ( A  o.  _I  )  =  A )
 
Theoremcoi2 5055 Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
 |-  ( Rel  A  ->  (  _I  o.  A )  =  A )
 
Theoremcoires1 5056 Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
 |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )
 
Theoremcoass 5057 Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
 |-  ( ( A  o.  B )  o.  C )  =  ( A  o.  ( B  o.  C ) )
 
Theoremrelcnvtr 5058 A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
 |-  ( Rel  R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )
 
Theoremrelssdmrn 5059 A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
 |-  ( Rel  A  ->  A 
 C_  ( dom  A  X.  ran  A ) )
 
Theoremcnvssrndm 5060 The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  `' A  C_  ( ran 
 A  X.  dom  A )
 
Theoremcossxp 5061 Composition as a subset of the cross product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |-  ( A  o.  B )  C_  ( dom  B  X.  ran  A )
 
Theoremcossxp2 5062 The composition of two relations is a relation, with bounds on its domain and codomain. (Contributed by BJ, 10-Jul-2022.)
 |-  ( ph  ->  R  C_  ( A  X.  B ) )   &    |-  ( ph  ->  S 
 C_  ( B  X.  C ) )   =>    |-  ( ph  ->  ( S  o.  R ) 
 C_  ( A  X.  C ) )
 
Theoremcocnvres 5063 Restricting a relation and a converse relation when they are composed together (Contributed by BJ, 10-Jul-2022.)
 |-  ( S  o.  `' R )  =  (
 ( S  |`  dom  R )  o.  `' ( R  |`  dom  S ) )
 
Theoremcocnvss 5064 Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( S  o.  `' R )  C_  ( ran  ( R  |`  dom  S )  X.  ran  ( S  |` 
 dom  R ) )
 
Theoremrelrelss 5065 Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008.)
 |-  ( ( Rel  A  /\  Rel  dom  A )  <->  A 
 C_  ( ( _V 
 X.  _V )  X.  _V ) )
 
Theoremunielrel 5066 The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  U. A  e.  U. R )
 
Theoremrelfld 5067 The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
 |-  ( Rel  R  ->  U.
 U. R  =  ( dom  R  u.  ran  R ) )
 
Theoremrelresfld 5068 Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
 |-  ( Rel  R  ->  ( R  |`  U. U. R )  =  R )
 
Theoremrelcoi2 5069 Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011.)
 |-  ( Rel  R  ->  ( (  _I  |`  U. U. R )  o.  R )  =  R )
 
Theoremrelcoi1 5070 Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.)
 |-  ( Rel  R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )
 
Theoremunidmrn 5071 The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
 |- 
 U. U. `' A  =  ( dom  A  u.  ran  A )
 
Theoremrelcnvfld 5072 if  R is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.)
 |-  ( Rel  R  ->  U.
 U. R  =  U. U. `' R )
 
Theoremdfdm2 5073 Alternate definition of domain df-dm 4549 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
 |- 
 dom  A  =  U. U. ( `' A  o.  A )
 
Theoremunixpm 5074* The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
 |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B ) )
 
Theoremunixp0im 5075 The union of an empty cross product is empty. (Contributed by Jim Kingdon, 18-Dec-2018.)
 |-  ( ( A  X.  B )  =  (/)  ->  U. ( A  X.  B )  =  (/) )
 
Theoremcnvexg 5076 The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
 |-  ( A  e.  V  ->  `' A  e.  _V )
 
Theoremcnvex 5077 The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.)
 |-  A  e.  _V   =>    |-  `' A  e.  _V
 
Theoremrelcnvexb 5078 A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.)
 |-  ( Rel  R  ->  ( R  e.  _V  <->  `' R  e.  _V ) )
 
Theoremressn 5079 Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( A  |`  { B } )  =  ( { B }  X.  ( A " { B }
 ) )
 
Theoremcnviinm 5080* The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  `' |^|_ x  e.  A  B  =  |^|_
 x  e.  A  `' B )
 
Theoremcnvpom 5081* The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
 |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
 
Theoremcnvsom 5082* The converse of a strict order relation is a strict order relation. (Contributed by Jim Kingdon, 19-Dec-2018.)
 |-  ( E. x  x  e.  A  ->  ( R  Or  A  <->  `' R  Or  A ) )
 
Theoremcoexg 5083 The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B )  e.  _V )
 
Theoremcoex 5084 The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  o.  B )  e.  _V
 
Theoremxpcom 5085* Composition of two cross products. (Contributed by Jim Kingdon, 20-Dec-2018.)
 |-  ( E. x  x  e.  B  ->  (
 ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
 
2.6.7  Definite description binder (inverted iota)
 
Syntaxcio 5086 Extend class notation with Russell's definition description binder (inverted iota).
 class  ( iota x ph )
 
Theoremiotajust 5087* Soundness justification theorem for df-iota 5088. (Contributed by Andrew Salmon, 29-Jun-2011.)
 |- 
 U. { y  |  { x  |  ph }  =  { y } }  =  U. { z  |  { x  |  ph }  =  { z } }
 
Definitiondf-iota 5088* Define Russell's definition description binder, which can be read as "the unique  x such that  ph," where  ph ordinarily contains  x as a free variable. Our definition is meaningful only when there is exactly one  x such that  ph is true (see iotaval 5099); otherwise, it evaluates to the empty set (see iotanul 5103). Russell used the inverted iota symbol 
iota to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use iotacl 5111 (for unbounded iota). This can be easier than applying a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

 |-  ( iota x ph )  =  U. { y  |  { x  |  ph }  =  { y } }
 
Theoremdfiota2 5089* Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( iota x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
 
Theoremnfiota1 5090 Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x ( iota x ph )
 
Theoremnfiotadw 5091* Bound-variable hypothesis builder for the  iota class. (Contributed by Jim Kingdon, 21-Dec-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/_ x ( iota y ps ) )
 
Theoremnfiotaw 5092* Bound-variable hypothesis builder for the  iota class. (Contributed by NM, 23-Aug-2011.)
 |- 
 F/ x ph   =>    |-  F/_ x ( iota y ph )
 
Theoremcbviota 5093 Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  F/ y ph   &    |-  F/ x ps   =>    |-  ( iota x ph )  =  ( iota y ps )
 
Theoremcbviotav 5094* Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota x ph )  =  ( iota
 y ps )
 
Theoremsb8iota 5095 Variable substitution in description binder. Compare sb8eu 2012. (Contributed by NM, 18-Mar-2013.)
 |- 
 F/ y ph   =>    |-  ( iota x ph )  =  ( iota y [ y  /  x ] ph )
 
Theoremiotaeq 5096 Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )
 
Theoremiotabi 5097 Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
 
Theoremuniabio 5098* Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x (
 ph 
 <->  x  =  y ) 
 ->  U. { x  |  ph
 }  =  y )
 
Theoremiotaval 5099* Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x (
 ph 
 <->  x  =  y ) 
 ->  ( iota x ph )  =  y )
 
Theoremiotauni 5100 Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  ->  ( iota x ph )  =  U. { x  |  ph } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >