![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0iin | GIF version |
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 3701 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
2 | vex 2613 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | ral0 3359 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
4 | 2, 3 | 2th 172 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
5 | 4 | abbi2i 2197 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
6 | 1, 5 | eqtr4i 2106 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 {cab 2069 ∀wral 2353 Vcvv 2610 ∅c0 3267 ∩ ciin 3699 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-v 2612 df-dif 2984 df-nul 3268 df-iin 3701 |
This theorem is referenced by: riin0 3769 iin0r 3963 |
Copyright terms: Public domain | W3C validator |