Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.37-1 GIF version

Theorem 19.37-1 1561
 Description: One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.)
Hypothesis
Ref Expression
19.37-1.1 xφ
Assertion
Ref Expression
19.37-1 (x(φψ) → (φxψ))

Proof of Theorem 19.37-1
StepHypRef Expression
1 19.37-1.1 . . 3 xφ
2119.3 1443 . 2 (xφφ)
3 19.35-1 1512 . 2 (x(φψ) → (xφxψ))
42, 3syl5bir 142 1 (x(φψ) → (φxψ))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1240  Ⅎwnf 1346  ∃wex 1378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424 This theorem depends on definitions:  df-bi 110  df-nf 1347 This theorem is referenced by:  19.37aiv  1562  spcimegft  2625  eqvincg  2662
 Copyright terms: Public domain W3C validator